

ESTUDIO INFORMATIVO DE LA LÍNEA FERROVIARIA DE ALTA VELOCIDAD VALENCIA-CASTELLÓN. FASE II

ANEJO Nº 9. ESTRUCTURAS Y TÚNELES

ÍNDICE

1.	INTRODUCCIÓN	2
2.	ESTRUCTURAS	2
2.1	1 BASES DE DISEÑO	2
2.2	2 TIPOLOGÍAS	2
	2.2.1 Viaducto ferroviario	2
	2.2.2 Pasos superiores	3
	2.2.3 Pasos inferiores	4
2.3	PROCESOS CONSTRUCTIVOS	5
	2.3.1 Nuevas estructuras sobre vías en uso.	5
	2.3.2 Nuevas estructuras sobre vaguadas de ríos o barrancos	5
2.4	4 LISTADO DE ESTRUCTURAS	6
	2.4.1 Tramo I	6
	2.4.1 Tramo II	9
	2.4.2 Tramo III	11
	2.4.3 Tramo IV	12
2.5	VALORACIÓN ECONÓMICA	. 12
	2.5.1 Viaducto ferroviario	13
	2.5.2 Pasos superiores	13
	2.5.3 Pasos inferiores	13
	2.5.4 Listado de estructuras	13
	2.5.5 Resumen Estructuras	22
3.	TÚNELES Y FALSOS TÚNELES	. 27
3.1	1 TÚNELES	. 27
	3.1.1 Bases de diseño	27
	3.1.2 Sección tipo	28

	3.1.3	Geología y Geotecnia en túneles	29
	3.1.4	Sistemas constructivos	30
3.2	2	FALSO TÚNEL	33
	3.2.1	Bases de diseño	33
	3.2.2	Geología y geotecnia	34
	3.2.3	Secciones tipo	34
	3.2.4	Procedimiento constructivo	36
3.3	3	SOSTENIMIENTOS	36
3.4	4	EMBOQUILLES	37
4.	VAL	ORACIÓN TÚNELES	38
	4.1.1	Alternativa II.1	38
	4.1.2	Alternativa II.3	38
	4.1.3	Alternativa III.1	38
	4.1.4	Alternativa IV	39

1. INTRODUCCIÓN

El presente anejo recoge el estudio de las estructuras y túneles necesarios en las diferentes alternativas de trazado contempladas a escala 1:5.000 del *Estudio Informativo de la Línea de Alta Velocidad de Valencia-Castellón*.

Desde el punto de vista de las estructuras, el objeto de este anejo es enumerar las estructuras identificadas que son necesarias construir en cada alternativa, así como determinar sus tipologías, características y secciones tipo, y finalmente realizar una valoración con macroprecios que posibiliten tener una estimación económica de su coste.

Desde el punto de vista de los túneles, el objeto de este anejo es el análisis previo de los túneles necesarios en las diferentes alternativas contempladas en el Estudio Informativo, partiendo de unas condiciones iniciales y del análisis de estudios previos con el fin de determinar las tipologías, características y sección tipo de los diferentes tramos de túnel en cada alternativa, así como una valoración de los mismos.

2. ESTRUCTURAS

2.1 BASES DE DISEÑO

El diseño de las estructuras objeto de este anejo se rige por la normativa vigente de aplicación, en función de los tipos de tráfico que tengan que soportar y superar, y de los materiales que las compongan. En concreto:

- EHE: Instrucción de hormigón estructural.
- EAE: Instrucción de acero estructural.
- IAP-11 Instrucción sobre las acciones a considerar en el proyecto de puentes de carretera.
- IAPF-07: Instrucción de las acciones a considerar en puentes de ferrocarril.
- Eurocódigos:
 - o UNE-EN 1990:2019. Bases de cálculo de estructuras.
 - UNE-EN 1991-1-1:2019. Acciones en estructuras. Partes 1-1 a 1-7.
 - o UNE-EN 1991-2:2019. Cargas de tráfico en puentes.

- NAP: Normas Adif de Plataforma.
- Orden FOM 3317/2010 Instrucción sobre las medidas específicas para la mejora de la eficiencia en la ejecución de las obras públicas de infraestructuras ferroviarias, carreteras y aeropuertos del Ministerio de Fomento.

2.2 TIPOLOGÍAS

Se consideran tres grandes tipos de puentes en función del tipo de vía que soporte y crucen: Viaductos, pasos superiores y pasos inferiores.

Los condicionantes o criterios que influyen en la tipología final de cada estructura son:

- Geométricos: La geometría de los distintos elementos estructurales viene determinada por las necesidades del tráfico que soporte y supere la estructura: ancho de plataforma, inclusión de acerado, barreras, pretiles y pantallas, gálibos a salvar y perfiles de terreno y trazado.
- Ambientales, tales como restricciones de ubicación en zonas protegidas, cauces de ríos, acequias o necesidades de paso para la fauna.
- Económicos: Se tiende a un diseño económicamente eficiente dentro de las limitaciones que requieran otros condicionantes.
- Constructivos: Se escoge para cada tipología empleada aquel proceso constructivo que suponga su mayor sencillez de construcción, atendiendo las restricciones que generen otros condicionantes como mantenimiento de tráfico en viales existentes o imposibilidad de apoyo o circulación en áreas de influencia de la nueva estructura.
- Estéticos: Cumpliendo con los condicionantes anteriores, se escoge aquella solución que mejor encaje con el entorno en el que se sitúa la estructura.

A continuación, se detalla para cada uno de esos tres tipos de tipología estructural aquella que se ha elegido.

2.2.1 Viaducto ferroviario

Las características que determinan las posibles tipologías para los viaductos ferroviarios son las siguientes:

- Ancho de plataforma: la nueva línea de Alta Velocidad que se propone en el presente Estudio Informativo es de doble vía lo que determina un ancho del tablero de 14 m.
- Longitud de vano: para el nivel de detalle de esta fase del Estudio informativo, se determina una longitud de vano media de 35 m. No se detectan elementos a salvar que suponga un incremento considerable de esta longitud media.
- Elevación: la orografía que cruza el trazado propuesto no es especialmente accidentada lo cual no requiere que haya pilas de gran altura.
- Tráfico: cerca del 40% de los viaductos cruzan por encima de vías existentes con tráfico, lo que condiciona el posible uso de cimbra y su tipo.

Tipología de tablero

La sección tipo escogida para los tableros de viaducto ferroviario es cajón continuo de hormigón ejecutado *in situ*, por ser la que mejor comportamiento tiene frente a las cargas y necesidades del tráfico ferroviario.

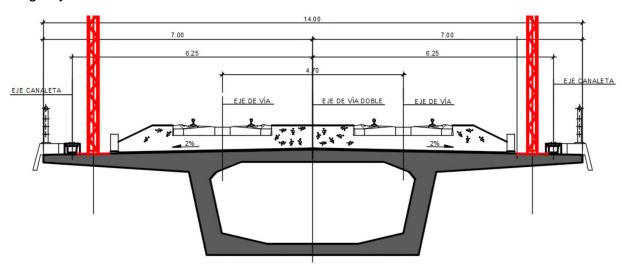


Imagen. Sección tipo cajón in situ de tablero para viaducto ferroviario

En el caso que bajo el tablero del futuro viaducto se encuentren vías en uso que no permitan el empleo de cimbrados, ya sean convencionales o porticados, se ha optado por el uso de doble viga artesa prefabricada de hormigón, que permite evitar en las vías inferiores cortes o desvíos prolongados en el tiempo.

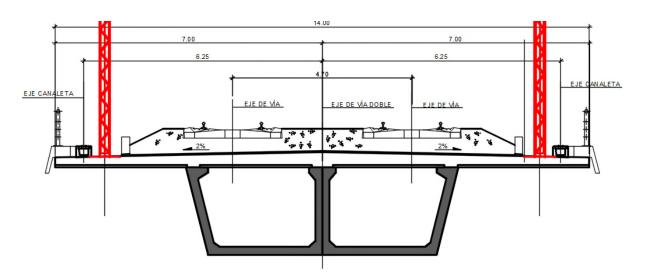


Imagen. Sección tipo doble artesa prefabricada de tablero para viaducto ferroviario

Tipología de subestructura

Con los datos geotécnicos disponibles de la traza se estima que las cimentaciones profundas son necesarias en aproximadamente el 90,5% de los casos, tanto en estribos como en pilas.

Los estribos de los viaductos ferroviarios son del tipo cerrado, y las pilas son de sección llena de fuste único, con capitel de ancho adaptado a la base de apoyo del tablero.

2.2.2 Pasos superiores

Para pasos superiores de carretera se opta para el tablero, por losas aligeradas postesadas, con un ancho de 12m:

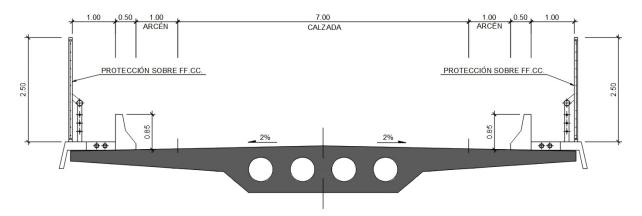


Imagen. Sección tipo de tablero para pasos superiores de carretera

En el caso que bajo el tablero del futuro paso superior se encuentren vías en uso que no permitan el empleo de cimbrados, ya sean convencionales o porticados, se opta por

el uso de tableros de vigas prefabricada de hormigón, que permite evitar en las vías inferiores cortes o desvíos prolongados en el tiempo.

Para pasos superiores de camino se opta para el tablero por losas macizas armadas, con un ancho de 8,4 m:

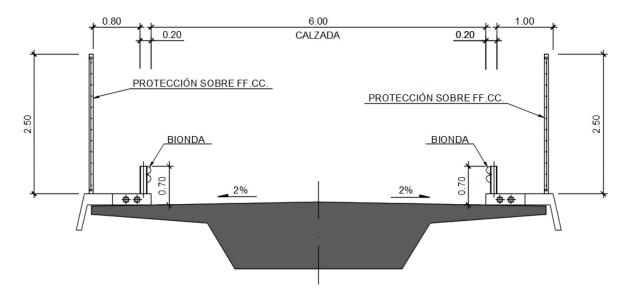


Imagen. Sección tipo de tablero para pasos superiores de camino

En ambos casos los estribos son cerrados y las pilas circulares de sección maciza, con cimentaciones profundas en aproximadamente el 90,5% de los casos al igual que en los viaductos.

2.2.3 Pasos inferiores

Los pasos inferiores se resuelven con marcos cerrados de hormigón armado tanto para carreteras como para caminos. La diferencia entre ambos estriba en el ancho libre, de 15.0m en el caso de carreteras y de 9.60 m para los caminos.

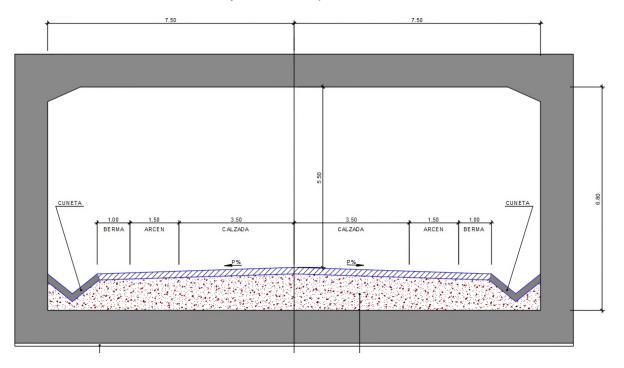


Imagen. Sección tipo para pasos inferiores de carretera

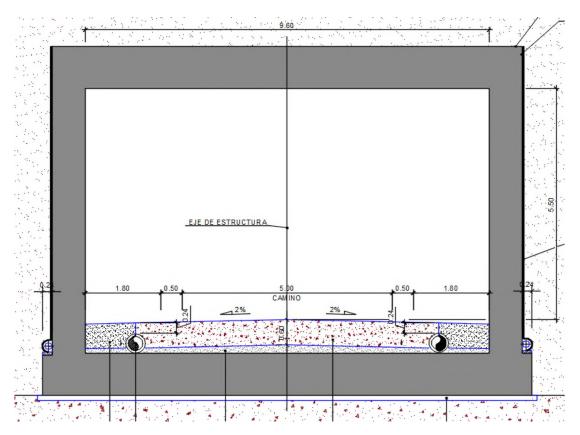


Imagen. Sección tipo para pasos inferiores de camino

2.3 PROCESOS CONSTRUCTIVOS

Tal como se ha mencionado al inicio del punto 2.2, para cada tipología empleada se ha estudiado un proceso constructivo que garantice entre otras cosas la viabilidad constructiva de la solución. Esto significa que se escoge aquel proceso constructivo que supone su mayor sencillez de construcción, pero atendiendo a las restricciones que generen otros condicionantes como el mantenimiento del tráfico en viales existentes o la imposibilidad de apoyo o circulación en áreas de influencia de la nueva estructura.

Cabe reseñar en especial dos casos : ejecución de nuevas estructuras sobre vías en explotación y con tráfico, y el caso de nuevas estructuras sobre ríos o barrancos.

2.3.1 Nuevas estructuras sobre vías en uso.

Este caso se corresponde con la ejecución de nuevos pasos superiores en puntos en los que la nueva línea de alta velocidad transcurre paralela a infraestructuras de carreteras (por ejemplo, la A-7), y, los cruces previstos sobre la nueva línea de Alta

Velocidad requieren una prolongación sobre la infraestructura existente para completar el paso de un margen a otro de ambas infraestructuras.

Desde el punto de vista constructivo, la complejidad añadida radica en compatibilizar la construcción del nuevo puente con el mantenimiento del nivel de servicio que se requiera de la infraestructura existente. Los procesos constructivos que se ajustan a estos condicionantes pasan por:

- Implantación de la subestructura de los puentes (pilas y estribos) fuera de las zonas críticas para el tráfico existente y con cimentaciones cuyo tamaño no invada esas zonas.
- Para la ejecución de la superestructura se emplean medios materiales que no invadan las zonas de tránsito de las vías en uso, como puede ser el uso de cimbras porticadas.
- Como alternativa a lo anterior, se puede plantear el empleo de elementos prefabricados para los tableros que compatibilizan los trabajos de construcción con el uso de las carreteras existentes, siendo necesario únicamente algún corte puntual, en horarios de bajo uso de la carretera para la implantación de vigas.

2.3.2 Nuevas estructuras sobre vaguadas de ríos o barrancos

En este caso los condicionantes constructivos vienen dados por la orografía que tiene la vaguada o barranco que puede condicionar los accesos y ubicaciones de las cimentaciones de los apoyos intermedios de los puentes. Se presta también atención a las alturas bajo el futuro tablero del puente y la posibilidad de acceso a zonas de trabajos temporales y posibles apoyos para cimbras, que puede inclinar la elección del proceso constructivo del tablero de soluciones *in situ* a prefabricadas.

2.4 LISTADO DE ESTRUCTURAS

A continuación, se listan las estructuras previstas en esta fase del Estudio Informativo, para cada alternativa y tramo considerado.

2.4.1 Tramo I

Alternativa I.1

P.K.	TIPOLOGÍA	VÍA
0+120	PS	Paso Superior Camino
1+050	PS	Paso Superior Carrer Ample
1+700	PI	Paso Inferior Camino
2+395	PI	Paso Inferior Carretera Rafelbuñol
3+170	PI	Paso Inferior Camino
4+060	PI	Paso Inferior CV-3020
4+420	PI	Paso Inferior Camino
5+005	Vto	Viaducto Cañada Moliner
5+070	PI	Paso Inferior Vía camino
5+200	PI	Paso Inferior Camino
5+480	PI	Paso Inferior Camino
5+850	PI	Paso Inferior Partida mas Blanch
6+190	Vto	Viaducto CV-32
6+400	Vto	Viaducto Ramal enlace CV-32
6+730	PI	Paso Inferior Camino
7+330	PI	Paso Inferior Camino de Liria
7+630	Vto	Viaducto Barranco Bors
7+650	PI	Paso Inferior Camino
7+920	PI	Paso Inferior Camino
8+510	Vto	Viaducto CV-300
8+780	PI	Paso Inferior Camino
8+860	PI	Paso Inferior Camino
8+960	Vto	Viaducto Barranco Calderona

P.K.	TIPOLOGÍA	VÍA
9+290	PI	Paso Inferior Camino
9+550	PI	Paso Inferior Camino
9+960	Vto	Viaducto Barranc del Puig
10+190	PI	Paso Inferior 10.2
10+410	Vto	Viaducto Barranc Pascual
10+730	PI	Paso Inferior Camí de Magrasaners
11+150	PI	Paso Inferior Avenida Molí de Vent
11+270	PI	Paso Inferior Camí Liria
11+670	Vto	Viaducto AP-7
12+000	PI	Paso Inferior Camino
12+350	PI	Paso Inferior Vía camino
12+550	PI	Paso Inferior Vía pista
13+940	PS	Paso Superior Camino
14+150	PS	Paso Superior Camino
14+570	PI	Paso Inferior Camino
15+220	PI	Paso Inferior Camino

Tabla. Inventario estructuras Alternativa I.1

Alternativa 1.2

P.K.	TIPOLOGÍA	VÍA
0+800	PS	Paso Superior Camí Barranquet
1+350	PI	Paso Inferior Camí del Borriquillo
1+900	PI	Paso Inferior CV-3130
2+200	PI	Paso Inferior Camino
2+480	PI	Paso Inferior Camino
2+590	PI	Paso Inferior Travesía Roca Cuiper
2+825	Vto	Viaducto ffcc Valencia - Tarragona
3+300	PI	Paso Inferior Camino
3+470	PI	Paso Inferior Camino

P.K.	TIPOLOGÍA	VÍA
4+020	PS	Paso Superior Vía Pista
4+200	PS	Paso Superior Vía Puente
4+650	PS	Paso superior Ramal ferroviario factoría Stadler Rail
5+500	PS	Paso Superior CV-32 Ampliación
6+030	PS	Paso Superior Vía camino ampliación
6+610	PS	Paso Superior Carrer Massamagrell ampliación
7+130	PS	Paso Superior Camí Moris
7+280	PS	Paso Superior Calle San José ampliación
8+205	PS	Paso Superior Camí Sta María ampliación
8+750	PS	Paso Superior CV-3182 ampliación
9+320	PS	Paso Superior CV-319 / Avda. de la Pau ampliación
9+900	PS	Paso Superior Camino
10+500	Vto	Viaducto Barranc del Puig
10+980	PS	Paso Superior Camino
11+710	PI	Paso Inferior Camino
12+150	Vto	Viaducto Camí de la Mar
12+320	Vto	Viaducto V-21
12+610	PI	Paso Inferior Camí de L'Alqueria
13+130	PS	Paso Superior Camino
13+280	PS	Paso Superior Camí de L'assagador
14+400	PS	Paso Superior CV-311
14+460	PS	Paso Superior Camino
14+780	PS	Paso Superior Camino
15+380	PS	Paso Superior Camino
15+720	PS	Paso Superior Camino

Tabla. Inventario estructuras Alternativa I.2

P.K.	TIPOLOGÍA	VÍA
0+800	PS	Paso Superior Camí Barranquet
1+350	PS	Paso Superior Camí del Borriquillo
1+900	PI	Paso Inferior CV-3130
2+200	PI	Paso Inferior Camino
2+480	PI	Paso Inferior Camino
2+590	PI	Paso Inferior Travesía Roca Cuiper
2+825	Vto	Viaducto ffcc Valencia - Tarragona
3+250	PI	Paso Inferior Camino
3+490	PI	Paso Inferior Camino
4+100	PS	Paso Superior Vía pista
4+250	PS	Paso Superior Camino
4+710	Vto	Viaducto Ramal ferroviario acceso factoría Stadler Rail
5+050	PI	Paso Inferior Camino
5+290	Vto	Viaducto CV-32
5+890	PI	Paso Inferior Camino
6+120	PI	Paso Inferior Camino
6+270	PI	Paso Inferior Camino
6+560	PI	Paso Inferior Carrer Massamagrell
6+860	PI	Paso Inferior Camino
7+230	PI	Paso Inferior Calle San José
7+910	PI	Paso Inferior Camino
8+090	Vto	Viaducto V-21
9+180	Vto	Viaducto CV-3182
9+600	PI	Paso Inferior Camino
9+770	PI	Paso Inferior Camino
10+300	PI	Paso Inferior Urb. Progreso Torre
10+780	Vto	Viaducto Barranco del Puig

P.K.	TIPOLOGÍA	VÍA
10+960	PI	Paso Inferior Camino
11+340	PI	Paso Inferior Camí les Pedres
12+320	Vto	Viaducto Camí de la Mar
12+830	PI	Paso Inferior Camí de L'Alquería
13+300	PS	Paso Superior Camino
13+420	PS	Paso Superior Camí de L'assagador
14+300	PS	Paso Superior CV-311
15+360	PS	Paso Superior Camino
15+820	PS	Paso Superior Camino

Tabla. Inventario estructuras Alternativa I.3

Alternativa I.6

P.K.	TIPOLOGÍA	VÍA
0+120	PS	Paso Superior Camino
1+050	PS	Paso Superior Carrer Ample
1+700	PI	Paso Inferior Camino
2+395	PI	Paso Inferior Carretera Rafelbuñol
3+170	PI	Paso Inferior Camino
4+060	PI	Paso Inferior CV-3020
4+420	PI	Paso Inferior Camino
5+005	Vto	Viaducto 5.0 Cañada Moliner
5+070	PI	Paso Inferior Vía camino
5+200	PI	Paso Inferior Camino
5+460	PI	Paso Inferior Camino
5+850	PI	Paso Inferior Partida mas Blanch
6+190	Vto	Viaducto CV-32
6+400	Vto	Viaducto Ramal enlace CV-32
6+750	PI	Paso Inferior Camino
7+330	PI	Paso Inferior Camino de Liria

P.K.	TIPOLOGÍA	VÍA
7+660	Vto	Viaducto Barranco Bors
7+920	PI	Paso Inferior Camino
8+510	Vto	Viaducto CV-300
8+770	PI	Paso Inferior Camino
8+860	PI	Paso Inferior Camino
8+960	Vto	Viaducto Barranco Calderona
9+275	PI	Paso Inferior Camino
9+550	PI	Paso Inferior Camino
9+960	Vto	Viaducto Barranc del Puig
10+190	PI	Paso Inferior 10.2
10+410	Vto	Viaducto Barranc Pascual
10+735	PI	Paso Inferior Camí de Magrasaners
11+160	PI	Paso Inferior Avenida Molí de Vent
11+470	PI	Paso Inferior Camino
11+835	PI	Paso Inferior Camino
12+230	Vto	Viaducto Vía Pista
12+650	PI	Paso Inferior Camino
12+900	Vto	Viaducto V-21
13+010	Vto	Viaducto Camino
13+870	PI	Paso Inferior Camino
13+390	Vto	Viaducto V-23
13+950	Vto	Viaducto Línea FF.CC. existente
14+615	PS	Paso Superior Camino Ampliación

Tabla. Inventario estructuras Alternativa I.6

2.4.1 Tramo II

<u>Alternativa II.1</u>

P.K.	TIPOLOGÍA	VÍA					
0+750	PS	Paso Superior Camino					
0+920	PS	Paso Superior Camino					
2+240	Vto	Viaducto Río Palancia					
3+450	PS	Paso Superior CV-324					
3+980	PI	Paso Inferior Camino local					
4+020	Vto	Viaducto Barranc de Bonilles					
4+390	PI	Paso Inferior Camino local					
4+610	PI	Paso Inferior Camino local					
5+610	PI	Paso Inferior Camino local					
6+510	PS	Paso Superior Camino local					
6+720	PS	Paso Superior Camino local					
7+750	PI	Paso Inferior Camino local					
8+350	PI	Paso Inferior Camino local					
9+130	Vto	Viaducto Entrada Faura					
9+520	PI	Paso Inferior Camino local					
9+920	Vto	Viaducto Barranc de Cuartell					
10+590	PI	Paso Inferior Camino local					
11+090	PI	Paso Inferior Camino local					
11+305	Vto	Viaducto Barranc del Arquet					
11+920	PI	Paso Inferior Camino local					
12+550	PI	Paso Inferior Camino local					
12+910	PI	Paso Inferior Camino local					
13+100	PI	Paso Inferior Camino local					
14+080	PI	Paso Inferior Camino local					
14+590	PI	Paso Inferior Camino local					
15+320	Vto	Viaducto A-7					

P.K.	TIPOLOGÍA	VÍA					
16+100	Vto	Viaducto Barranc del Cabell Negre					
16+740	PS	Paso Superior Camino local					
17+020	PI	Paso Inferior Camino local					

Tabla. Inventario estructuras Alternativa II.1

P.K.	TIPOLOGÍA	VÍA					
0+750	PI	Paso Inferior Camino local					
1+100	Vto	Viaducto Nuevo ffcc Puerto Sagunto					
1+350	Vto	Viaducto Nuevo ffcc Puerto Sagunto					
1+860	Vto	Viaducto FF.CC Puerto Sagunto y V-23					
2+250	Vto	Viaducto FF.CC puerto Sagunto					
3+050	PS	Paso Superior Sagunto					
3+780	PS	Paso Superior Sagunto N-237					
3+850	Vto	Viaducto Río Palancia					
4+120	PI	Paso Inferior CV-317					
5+010	PS	Paso Superior Camino de la Torreta					
6+870	PI	Paso Inferior Camino local					
7+680	PI	Paso Inferior Camino local					
8+130	PI	Paso Inferior Camino local					
8+850	Vto	Viaducto CV-320					
9+280	PI	Paso Inferior Camino local					
9+560	PI	Paso Inferior Camino local					
9+700	Vto	Viaducto Sequia del Rei					
9+980	Vto	Viaducto Sequia del Rei					
10+780	PI	Paso Inferior Camino local					
11+110	PI	Paso Inferior Av. De la Vall de Segó					
11+460	PI	Paso Inferior Camí del Racó					
11+940	PI	Paso Inferior Camino local					

P.K.	TIPOLOGÍA	VÍA						
12+420	PI	Paso Inferior Camino del Cabeçol						
12+680	PI	Paso Inferior Camino Fuente de la Bota						
12+850	PI	PI Paso Inferior Camino local						
13+090	PI	Paso Inferior Camino local						
13+720	PS	Paso Superior Camino local						
14+780	PS	Paso Superior Camino local						
15+750	PI	Paso Inferior Camino local						
16+120	PI	Paso Inferior Camino local Acequia de la raya						
17+330	PS	Paso Superior Camino local						
17+520	PI	Paso Inferior Camino local						
17+880	PI	Paso Inferior Camino local						
18+460	PS	Paso Superior Camino de Moncofa						
19+000	PI	Paso Inferior Camino local						

Tabla. Inventario estructuras Alternativa II.2

P.K.	TIPOLOGÍA	VÍA		
0+750	PS	Paso Superior Camino		
0+920	PS	Paso Superior Camino		
2+240	Vto	Viaducto Río Palancia		
3+450	PS	Paso Superior CV-324		
3+980	PI	Paso Inferior Camino local		
4+020	Vto	Viaducto Barranc de Bonilles		
4+390	PI	Paso Inferior Camino		
4+610	PI	Paso Inferior Camino		
5+610	PI	Paso Inferior Camino		
6+480	PS	Paso Superior Camino		
6+560	PS	Paso Superior Camino		
6+750	PS	Paso Superior Camino		

P.K.	TIPOLOGÍA	VÍA				
7+200	PI	Paso Inferior Camino				
7+660	Vto	Viaducto AP-7				
8+350	PI	Paso Inferior 8.4 Camí de la Victoria				
8+525	Vto	Viaducto FF.CC. existente				
9+400	Vto	Viaducto A-7				
9+835	Vto	Viaducto CV-320				
10+215	PI	Paso Inferior Camino				
10+495	PI	Paso Inferior Camino				
10+640	Vto	Viaducto Sequia del Rei				
10+915	Vto	Viaducto 10.9 CV-3232				
11+715	PI	Paso Inferior Camino				
12+045	PI	Paso Inferior Avda. De la Vall de Segó				
12+395	PI	Paso Inferior Camí del Racó				
12+875	PI	Paso Inferior Camino				
13+355	PI	Paso Inferior Camino del Cabeçol				
13+615	PI	Paso Inferior Camino fuente de la Bota				
13+785	PI	Paso Inferior Camino				
14+025	PI	Paso Inferior Camino				
14+655	PS	Paso Superior Camino				
15+715	PS	Paso Superior Camino				
16+685	PI	Paso Inferior Camino				
17+055	PI	Paso Inferior Camino-Acequia d la raya				
18+265	PS	Paso Superior Camino				
18+455	PI	Paso Inferior Camino				
18+815	PI	Paso Inferior Camino				
19+395	PS	Paso Superior Camino de Moncofa				
19+935	PI	Paso Inferior Camino				

Tabla. Inventario estructuras Alternativa II.3

2.4.2 Tramo III

Alternativa III.1

P.K.	TIPOLOGÍA	VÍA			
0+400	PS	Paso Superior CV-230			
2+640	Vto	Viaducto del río Belcaire			
3+700	PI	Paso Inferior Camino local			
4+020	PI	Paso Inferior Camino local			
4+320	PI	Paso Inferior Camino local			
4+750	Vto	Viaducto Barranco Randero			
5+180	PI	Paso Inferior Camino local			
5+450	PI	Paso Inferior Camino local			
5+940	Vto	Viaducto sobre Autovía A-7			
6+450	PI	Paso Inferior Camino local			
7+840	PI	Paso Inferior Camino local			
8+120	PI	Paso Inferior Camino local			
8+300	PI	Paso Inferior Camino local			
8+540	PI	Paso Inferior CV-231			
8+840	PI	Paso Inferior Camino local			
9+340	Vto	Viaducto sobre Autovía A-7			
9+780	PI	Paso Inferior Camino local			
10+380	Vto	Viaducto Barranco Rodador			
10+650	PI	Paso Inferior Camino local			
11+600	PI	Paso Inferior Camino local			
11+820	Vto	Viaducto Barranco Betxi			
13+050	PI	Paso Inferior Camino local			
14+200	PI	Paso Inferior Camino local			
14+890	Vto	Viaducto sobre la Autopista AP-7			
15+120	PI	Paso Inferior CV-222			
15+400	Vto	Viaducto del Río Sonella			

P.K.	TIPOLOGÍA	VÍA					
16+580	PI	Paso Inferior N-340					
17+100	PI	PI Paso Inferior Camino local					
17+760	Vto	Viaducto sobre ff.cc Valencia - Castellón					
17+960	PI	Paso Inferior Camino local					
18+390	PI	Paso Inferior Camino local					
18+940	Vto	Viaducto sobre carretera CV-185					
19+280	PI	Paso Inferior Camino local					
19+800	PI	Paso Inferior Camino local					
20+300	PI	Paso Inferior Camino local					
20+700	PI	Paso Inferior Camino local					

Tabla. Inventario estructuras Alternativa III.1

P.K.	TIPOLOGÍA	VÍA					
0+540	PS	Paso Superior Camino local					
1+010	PS	Paso Superior Camino local					
1+650	Vto	Viaducto Río Belcaire					
2+500	Vto	Viaducto CV-2250					
3+100	Pl	Paso Inferior Camino local					
3+950	PS	Paso Superior Camino local					
4+820	Pl	Paso Inferior 4.8 Camino local					
5+450	Vto	Viaducto Barranco de Torrent					
6+020	PS	Paso Superior CV-2220					
6+700	Vto	Viaducto Acequia El Bras					
7+150	PI	Paso Inferior Camino local					
7+420	Vto	Viaducto					
8+240	Vto	Viaducto					
8+880	Pl	Paso Inferior Camino local					
9+500	PI	Paso Inferior Camino local					

P.K.	TIPOLOGÍA	VÍA						
10+270	PI	Paso Inferior Camino local						
10+890	Vto	Viaducto CV-18						
11+520	Pl	PI Paso Inferior Camino local						
12+580	Pl	Paso Inferior Camino local						
12+960	Pl	Paso Inferior Camino local						
13+220	Vto	Viaducto CV-222						
14+080	Vto	Viaducto Río Anna						
14+500	Pl	Paso Inferior Camino local						
15+290	Pl	Paso Inferior Camino local						
15+450	Vto	Viaducto CV-185						
16+590	Pl	Paso Inferior Camino local						
17+140	Pl	Paso Inferior Camino local						
17+580	PI	Paso Inferior Camino local						

Tabla. Inventario estructuras Alternativa III.2

2.4.3 Tramo IV

Alternativa IV (Única)

P.K.	TIPOLOGÍA	VÍA				
0+500	PI	Paso Inferior Camino Local				
1+510	Vto	Viaducto Río Mijares				
1+980	PI	Paso Inferior Calle San Jaime ampliación				
2+870	PS	Paso Superior Avda. Almanzora				
3+060	PI	Paso Inferior Camí de Ratlla D'Almassora				
4+950	PI Paso Inferior Camí Fadrell ampliación					

Tabla. Inventario estructuras Alternativa IV

2.5 VALORACIÓN ECONÓMICA

En la valoración económica de las estructuras se tiene como referencia lo expresado en la Orden FOM 3317/2010 en lo referente a coste por metro cuadrado de viaductos, pasos superiores y pasos inferiores, que se extrae a continuación:

Coste por unidad de superficie de viaducto Coste de ejecución material (€/m²)

Orografía llana				Orografía ondulada Orog			rafía accidentada o muy accidentada				
Cimen	itación unda		entación recta		itación unda		ntación ecta	Cimentación profunda		Cimentación directa	
2.100	2.300	800	1.100	2.200	2.400	1.100	1.400	2.300	2.500	1.400	1.700

Imagen. Coste por metro cuadrado para viaductos ferroviarios (Fuente FOM 3317/2010)

Coste máximo por unidad de superficie de estructura (€/m²)

Tipo de estructura	Cimentación superficial en zonas de sismicidad baja	Cimentación profunda en zonas de sismicidad alta	
Estructura longitudinal a la traza	900	1.200	
Paso superior sobre autovía	600 800		
Paso inferior de autovía	. 800		

Imagen. Coste por metro cuadrado para puentes de carreteras (Fuente FOM 3317/2010)

Para una mejor aproximación del coste de cada estructura se determina los macroprecios correspondientes a las tres partes principales de un puente: m² de tablero, unidad de estribo y unidad de pila, y así evitar la influencia que tiene la longitud de la estructura en los precios de las tablas anteriores por efecto de la subestructura. Dicho de otro modo, el porcentaje que supone el coste de la subestructura sobre el total es mayor en estructuras cortas y ese porcentaje va disminuyendo con el incremento de la longitud de estas.

2.5.1 Viaducto ferroviario

Los macroprecios obtenidos para este tipo de estructura son los siguientes:

Tipo de cimentación	Promedio coste de tablero	Promedio de coste subestructura	Promedio de coste total	Promedio de €/m²
directa	843,160.50 €	438,847.63 €	1,282,008.13 €	817.86 €
Profunda	1,316,432.55 €	908,196.47 €	2,224,629.02 €	1,076.16 €

Tabla. Macroprecios para viaductos

• Precio medio Orden FOM 3317: 1700 €/m²

2.5.2 Pasos superiores

Los macroprecios obtenidos para este tipo de estructura son los siguientes:

Paso superior

Tipo de cimentación	Promedio coste de tablero	Promedio de coste subestructura	Promedio de coste total	Promedio de €/m²
directa	102,761.69 €	293,516.11 €	396,277.79 €	1,145.93 €
Profunda	200,669.89 €	628,081.59 €	828,751.48 €	1,307.72 €

Tabla. Macroprecios para pasos superiores

• Precio medio Orden FOM 3317: 1000 €/m²

2.5.3 Pasos inferiores

Los macroprecios obtenidos para este tipo de estructura son los siguientes:

Paso inferior

Promedio de coste total	Promedio de €/m²
704,755.78 €	1,055.38 €

Tabla. Macroprecios para pasos inferiores

• Precio medio Orden FOM 3317: 800 €/m²

2.5.4 Listado de estructuras

A continuación, se presentan los listados de nuevas estructuras valoradas y organizadas por tipos, alternativas y tramos, con indicación de superficie estimada y coste total por estructura.

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL
0+120	Paso Superior Camino	PS	358	547.738,67 €
1+050	Paso Superior Carrer Ample	PS	679	797.997,30 €
1+700	Paso Inferior Camino	PI	635	654.430,55 €
2+395	Paso Inferior Carretera Rafelbuñol	PI	981	1.004.926,54 €
3+170	Paso Inferior Camino	PI	778	772.788,07 €
4+060	Paso Inferior CV-3020	PI	1.202	1.186.683,69 €
4+420	Paso Inferior Camino	PI	635	654.430,55 €
5+005	Viaducto Cañada Moliner	Vto	420	817.123,98 €
5+070	Paso Inferior Vía camino	PI	850	832.643,86 €
5+200	Paso Inferior Camino	PI	585	613.145,34 €
5+480	Paso Inferior Camino	PI	550	583.875,44 €
5+850	Paso Inferior Partida mas Blanch	PI	905	941.526,41 €
6+190	Viaducto CV-32	Vto	1.190	1.330.629,54 €
6+400	Viaducto Ramal enlace CV-32	Vto	560	892.071,58 €
6+730	Paso Inferior Camino	PI	569	599.964,04 €
7+330	Paso Inferior Camino de Liria	PI	558	590.911,14 €
7+630	Viaducto Barranco Bors	Vto	840	1.041.966,78 €
7+650	Paso Inferior Camino	PI	550	583.875,44 €
7+920	Paso Inferior Camino	PI	550	583.875,44 €
8+510	Viaducto CV-300	Vto	840	1.041.966,78 €
8+780	Paso Inferior Camino	PI	550	583.875,44 €
8+860	Paso Inferior Camino	PI	569	599.964,04 €
8+960	Viaducto Barranco Calderona	Vto	840	1.041.966,78 €
9+290	Paso Inferior Camino	PI	569	599.964,04€

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL	
9+550	Paso Inferior Camino	PI	569	599.964,04 €	
9+960	Viaducto Barranc del Puig	Vto	560	892.071,58€	
10+190	Paso Inferior 10.2	PI	850	832.643,86 €	
10+410	Viaducto Barranc Pascual	Vto	980	1.116.914,38 €	
10+730	Paso Inferior Camí de Magrasaners	PI	880	857.508,06 €	
11+150	Paso Inferior Avenida Molí de Vent	PI	850	896.577,73€	
11+270	Paso Inferior Camí Liria	PI	850	832.643,86 €	
11+670	Viaducto AP-7	Vto	3.220	2.822.544,80 €	
12+000	Paso Inferior Camino	PI	550	583.875,44 €	
12+350	Paso Inferior Vía camino	PI	850	832.643,86 €	
12+550	Paso Inferior Vía pista	PI	863	907.382,19€	
13+940	Paso Superior Camino	PS	388	556.755,07€	
14+150	Paso Superior Camino	PS	341	542.882,87 €	
14+570	Paso Inferior Camino	PI	778	772.788,07 €	
15+220	Paso Inferior Camino	PI	558	590.911,14€	
	TOTAL				

Tabla. Valoración estructuras Alternativa I.1

Alternativa 1.2

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL
0+800	Paso Superior Camí Barranquet	PS	348	544.859,96 €
1+350	Paso Inferior Camí del Borriquillo	PI	635	654.430,55 €
1+900	Paso Inferior CV-3130	PI	981	1.004.926,54 €
2+200	Paso Inferior Camino	PI	569	599.964,04 €
2+480	Paso Inferior Camino	PI	558	590.911,14€
2+590	Paso Inferior Travesía Roca Cuiper	PI	863	907.382,19€
2+825	Viaducto ffcc Valencia - Tarragona	Vto	4.480	3.800.954,48 €
3+300	Paso Inferior Camino	PI	550	583.875,44 €
3+470	Paso Inferior Camino	PI	569	599.964,04 €
4+020	Paso Superior Vía Pista	PS	480	653.162,14 €
4+200	Paso Superior Vía Puente	PS	497	747.681,20€
4+650	Paso superior Ramal ferroviario factoría Stadler Rail	PS	1.920	1.590.518,53€
5+500	Paso Superior CV-32 Ampliación	PS	1.400	1.087.331,20 €
6+030	Paso Superior Vía camino ampliación	PS	341	542.882,87 €
6+610	Paso Superior Carrer Massamagrell ampliación	PS	840	932.418,75 €
7+130	Paso Superior Camí Moris	PS	341	542.882,87 €
7+280	Paso Superior Calle San José ampliación	PS	840	932.418,75 €
8+205	Paso Superior Camí Sta María ampliación	PS	588	682.397,77€
8+750	Paso Superior CV-3182 ampliación	PS	960	965.614,27 €
9+320	Paso Superior CV-319 / Avda. de la Pau ampliación	PS	840	932.418,75 €
9+900	Paso Superior Camino	PS	336	474.997,68 €
10+500	Viaducto Barranc del Puig	Vto	560	892.071,58 €
10+980	Paso Superior Camino	PS	336	474.997,68 €
11+710	Paso Inferior Camino	PI	778	772.788,07 €

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL
12+150	Viaducto Camí de la Mar	Vto	1.190	1.330.629,54 €
11+820	Viaducto V-21	Vto	2.800	2.496.408,23€
12+610	Paso Inferior Camí de L'Alquería	PI	506	547.389,40€
13+130	Paso Superior Camino	PS	336	474.997,68 €
13+280	Paso Superior Camí de L'assagador	PS	358	547.738,67€
14+400	Paso Superior CV-311	PS	480	653.162,14€
14+460	Paso Superior Camino	PS	388	556.755,07€
14+780	Paso Superior Camino	PS	554	763.538,62€
15+380	Paso Superior Camino	PS	336	474.997,68 €
15+720	Paso Superior Camino	PS	336	474.997,68 €
	TOTAL			29.832.465,21 €

Tabla. Valoración estructuras Alternativa I.2

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL
0+780	Paso Superior Camí Barranquet	PS	348	544.859,96 €
1+280	Paso Superior Camí del Borriquillo	PS	388	556.755,07€
1+900	Paso Inferior CV-3130	PI	981	1.004.926,54 €
2+200	Paso Inferior Camino	PI	569	599.964,04€
2+480	Paso Inferior Camino	PI	569	599.964,04€
2+590	Paso Inferior Travesía Roca Cuiper	PI	863	907.382,19€
2+800	Viaducto ffcc Valencia - Tarragona	Vto	3.500	3.073.733,76 €
3+250	Paso Inferior Camino	PI	550	583.875,44 €
3+490	Paso Inferior Camino	PI	550	583.875,44 €
4+100	Paso Superior Vía pista	PS	480	653.162,14 €
4+250	Paso Superior Camino	PS	336	474.997,68 €
4+710	Viaducto Ramal ferroviario acceso factoría Stadler Rail	Vto	560	892.071,58 €
5+050	Paso Inferior Camino	PI	558	590.911,14€
5+290	Viaducto CV-32	Vto	1.120	1.293.155,74 €
5+890	Paso Inferior Camino	PI	550	583.875,44 €
6+120	Paso Inferior Camino	PI	558	590.911,14€
6+270	Paso Inferior Camino	PI	778	772.788,07 €
6+560	Paso Inferior Carrer Massamagrell	PI	863	907.382,19€
6+860	Paso Inferior Camino	PI	558	590.911,14€
7+230	Paso Inferior Calle San José	PI	850	896.577,73€
7+910	Paso Inferior Camino	PI	585	613.145,34 €
8+090	Viaducto V-21	Vto	3.500	3.073.733,76 €
9+180	Viaducto CV-3182	Vto	700	967.019,18€
9+600	Paso Inferior Camino	PI	550	583.875,44 €
9+770	Paso Inferior Camino	PI	569	599.964,04€
10+300	Paso Inferior Urb. Progreso Torre	PI	905	941.526,41 €

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL
10+780	Viaducto Barranco del Puig	Vto	840	1.041.966,78 €
10+960	Paso Inferior Camino	PI	635	654.430,55€
11+340	Paso Inferior Camí les Pedres	PI	635	654.430,55€
11+320	Viaducto Camí de la Mar	Vto	560	892.071,58€
12+830	Paso Inferior Camí de L'Alquería	PI	778	772.788,07€
13+300	Paso Superior Camino	PS	336	474.997,68 €
13+420	Paso Superior Camí de L'assagador	PS	475	582.603,54 €
14+300	Paso Superior CV-311	PS	554	763.538,62€
15+360	Paso Superior Camino	PS	341	542.882,87€
15+820	Paso Superior Camino	PS	348	544.859,96 €
	TOTAL			30.313.054,87 €

Tabla. Valoración estructuras Alternativa I.3

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL
0+120	Paso Superior Camino	PS	420	566.247,26 €
1+050	Paso Superior Carrer Ample	PS	600	776.192,68 €
1+700	Paso Inferior Camino	PI	506	547.389,40 €
2+395	Paso Inferior Carretera Rafelbuñol	PI	782	840.547,51 €
3+170	Paso Inferior Camino	PI	506	547.389,40 €
4+060	Paso Inferior CV-3020	PI	782	840.547,51 €
4+440	Paso Inferior Camino	PI	506	547.389,40 €
5+005	Viaducto Cañada Moliner	Vto	420	715.830,22 €
5+070	Paso Inferior Vía camino	PI	506	547.389,40 €
5+200	Paso Inferior Camino	PI	506	547.389,40 €
5+460	Paso Inferior Camino	PI	506	547.389,40 €
5+850	Paso Inferior Partida mas Blanch	PI	782	840.547,51 €
6+190	Viaducto CV-32	Vto	1.190	1.431.923,31 €
6+400	Viaducto Ramal enlace CV-32	Vto	560	993.365,34 €
6+750	Paso Inferior Camino	PI	506	547.389,40 €
7+330	Paso Inferior Camino de Liria	PI	506	547.389,40 €
7+630	Viaducto Barranco Bors	Vto	280	742.176,38 €
7+660	Paso Inferior Camino	PI	506	547.389,40 €
7+920	Paso Inferior Camino	PI	506	547.389,40 €
8+510	Viaducto CV-300	Vto	840	1.143.260,54 €
8+780	Paso Inferior Camino	PI	506	547.389,40 €
8+860	Paso Inferior Camino	PI	506	547.389,40 €
8+960	Viaducto Barranco Calderona	Vto	840	1.143.260,54 €
9+290	Paso Inferior Camino	PI	506	547.389,40 €
9+550	Paso Inferior Camino	PI	506	547.389,40 €
9+960	Viaducto Barranc del Puig	Vto	560	993.365,34 €
10+190	Paso Inferior 10.2	PI	506	547.389,40 €

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL
10+410	Viaducto Barranc Pascual	Vto	980	1.218.208,14 €
10+730	Paso Inferior Camí de Magrasaners	PI	506	547.389,40 €
11+160	Paso Inferior Avenida Molí de Vent	PI	782	840.547,51 €
11+470	Paso Inferior Camino	PI	506	547.389,40 €
11+835	Paso Inferior Camino	PI	506	547.389,40 €
12+265	Viaducto Vía Pista	Vto	980	1.218.208,14 €
12+650	Paso Inferior Camino	PI	506	547.389,40 €
12+900	Viaducto V-21	Vto	910	1.180.734,34 €
13+010	Viaducto Camino	Vto	1.050	1.356.975,71 €
13+470	Viaducto V-23	Vto	2.310	2.234.091,63 €
13+870	Paso Inferior Camino	PI	506	547.389,40 €
14+100	Viaducto Línea FF.CC. existente	Vto	4.200	3.651.059,28 €
14+615	Paso Superior Camino Ampliación	PS	420	566.247,26€
	TOTAL			34.342.417,98 €

Tabla. Valoración estructuras Alternativa I.6

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL	
0+750	Paso Superior Camino	PS	336	474.997,68 €	
0+920	Paso Superior Camino	PS	388	556.755,07€	
2+240	Viaducto Río Palancia	Vto	15.750	12.163.992,83 €	
3+450	Paso Superior CV-324	PS	554	763.538,62€	
3+980	Paso Inferior	PI	506	547.389,40 €	
4+020	Viaducto Barranc de Bonilles	Vto	700	1.068.312,94 €	
4+390	Paso Inferior Camino local	PI	558	590.911,14€	
4+610	Paso Inferior Camino local	PI	558	590.911,14€	
5+610	Paso Inferior Camino local	PI	550	583.875,44 €	
6+510	Paso Superior Camino local	PS	336	474.997,68 €	
6+720	Paso Superior Camino local	PS	336	474.997,68 €	
7+750	Paso Inferior Camino local	PI	550	583.875,44 €	
8+350	Paso Inferior Camino local	PI	550	583.875,44 €	
9+130	Viaducto Entrada Faura	Vto	1.960	1.844.135,11 €	
9+520	Paso Inferior Camino local	PI	558	590.911,14€	
9+920	Viaducto Barranc de Cuartell	Vto	1.820	1.769.187,51 €	
10+590	Paso Inferior Camino local	PI	635	654.430,55€	
11+090	Paso Inferior Camino local	PI	558	590.911,14€	
11+305	Viaducto Barranc del Arquet	Vto	1.610	1.656.766,11 €	
11+920	Paso Inferior Camino local	PI	778	772.788,07€	
12+550	Paso Inferior Camino local	PI	585	613.145,34 €	
12+910	Paso Inferior Camino local	PI	550	583.875,44 €	
13+100	Paso Inferior Camino local	PI	778	772.788,07 €	
14+080	Paso Inferior Camino local	PI	558	590.911,14€	
14+590	Paso Inferior Camino local	PI	550	583.875,44 €	
15+320	Viaducto A-7	Vto	6.790	5.442.764,94 €	
16+100	Viaducto Barranc del Cabell Negre	Vto	3.640	3.148.681,36 €	

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL
16+740	Paso Superior Camino local	PS	337	541.726,79€
17+020	Paso Inferior Camino local	PI	558	590.911,14€
	TOTAL			40.206.239,75 €

Tabla. Valoración estructuras Alternativa II.1

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL
0+750	Paso Inferior Camino local	PI	550	583.875,44 €
1+100	Viaducto Nuevo ffcc Puerto Sagunto	Vto	1.792	1.754.197,99 €
1+350	Viaducto Nuevo ffcc Puerto Sagunto	Vto	1.596	1.649.271,35 €
1+860	Viaducto FF.CC Puerto Sagunto y V- 23	Vto	3.360	2.897.492,40 €
2+250	Viaducto FF.CC puerto Sagunto	Vto	1.372	1.428.061,42 €
3+050	Paso Superior Sagunto	PS	609	778.753,15 €
3+780	Paso Superior Sagunto N-237	PS	600	776.192,68 €
3+850	Viaducto Río Palancia	Vto	2.520	2.346.513,03 €
4+120	Paso Inferior CV-317	PI	850	896.577,73 €
5+010	Paso Superior Camino de la Torreta	PS	672	707.298,71 €
6+870	Paso Inferior Camino local	PI	635	654.430,55 €
7+680	Paso Inferior Camino local	PI	718	723.164,20 €
8+130	Paso Inferior Camino local	PI	718	723.164,20 €
8+850	Viaducto CV-320	Vto	1.190	1.330.629,54 €
9+280	Paso Inferior Camino local	PI	778	772.788,07 €
9+560	Paso Inferior Camino local	PI	558	590.911,14€
9+700	Viaducto Sequia del Rei	Vto	980	1.218.208,14 €
9+980	Viaducto CV-3232	Vto	700	1.068.312,94 €
10+780	Paso Inferior Camino local	PI	550	583.875,44 €
11+110	Paso Inferior Av. De la Vall de Segó	PI	850	896.577,73 €
11+460	Paso Inferior Camí del Racó	PI	550	583.875,44 €
11+940	Paso Inferior Camino local	PI	550	583.875,44 €
12+420	Paso Inferior Camino del Cabeçol	PI	550	583.875,44 €
12+680	Paso Inferior Camino fuente de la Bota	PI	718	723.164,20 €
12+850	Paso Inferior Camino local	PI	558	590.911,14€
13+090	Paso Inferior Camino local	PI	550	583.875,44 €
13+720	Paso Superior Camino local	PS	966	927.149,26 €

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL	
14+780	Paso Superior Camino local	PS	1.302	1.159.450,29€	
15+750	Paso Inferior Camino local	PI	778	772.788,07€	
16+120	Paso Inferior Camino local Acequia de la raya	PI	550	583.875,44 €	
17+330	Paso Superior Camino local	PS	1.302	1.159.450,29€	
17+520	Paso Inferior Camino local	PI	558	590.911,14€	
17+880	Paso Inferior Camino local	PI	778	772.788,07 €	
18+460	Paso Superior Camino de Moncofa	PS	966	927.149,26 €	
19+000	Paso Inferior Camino local	PI	558	590.911,14€	
	TOTAL				

Tabla. Valoración estructuras Alternativa II.2

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL
0+750	Paso Superior Camino	PS	420	566.247,26€
0+920	Paso Superior Camino	PS	420	566.247,26€
2+240	Viaducto Río Palancia	Vto	15.750	12.265.286,59 €
3+450	Paso Superior CV-324	PS	600	776.192,68 €
3+980	Paso Inferior Camino Local	PI	506	547.389,40 €
4+020	Viaducto Barranc de Bonilles	Vto	700	1.068.312,94 €
4+390	Paso Inferior Camino	PI	506	547.389,40 €
4+610	Paso Inferior Camino	PI	506	547.389,40 €
5+610	Paso Inferior Camino	PI	506	547.389,40 €
6+480	Paso Superior Camino	PS	420	566.247,26 €
6+560	Paso Superior Camino	PS	420	566.247,26 €
6+750	Paso Superior Camino	PS	420	566.247,26€
7+200	Paso Inferior Camino	PI	506	547.389,40 €
7+660	Viaducto AP-7	Vto	3.150	2.886.364,76 €
8+350	Paso Inferior 8.4 Camí de la Victoria	PI	506	547.389,40 €
8+525	Viaducto FF.CC. existente	Vto	2.100	2.121.670,23 €
9+400	Viaducto A-7	Vto	3.500	3.175.027,52 €
9+835	Viaducto CV-320	Vto	1.260	1.469.397,11 €
10+215	Paso Inferior Camino	PI	506	547.389,40 €
10+495	Paso Inferior Camino	PI	506	547.389,40 €
10+675	Viaducto Sequia del Rei	Vto	980	1.218.208,14 €
10+915	Viaducto CV-3232	Vto	700	1.068.312,94 €
11+715	Paso Inferior Camino	PI	506	547.389,40 €
12+045	Paso Inferior Avda. De la Vall de Segó	PI	782	840.547,51 €
12+395	Paso Inferior Camí del Racó	PI	506	547.389,40 €
12+875	Paso Inferior Camino	PI	506	547.389,40 €
13+355	Paso Inferior Camino del Cabeçol	PI	506	547.389,40 €

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL
13+615	Paso Inferior Camino fuente de la Bota	PI	506	547.389,40 €
13+785	Paso Inferior Camino	PI	506	547.389,40 €
14+025	Paso Inferior Camino	PI	506	547.389,40€
14+655	Paso Superior Camino	PS	420	566.247,26€
15+715	Paso Superior Camino	PS	420	566.247,26€
16+685	Paso Inferior Camino	PI	506	547.389,40 €
17+055	Paso Inferior Camino-Acequia de la raya	PI	506	547.389,40 €
18+265	Paso Superior Camino	PS	420	566.247,26 €
18+455	Paso Inferior Camino	PI	506	547.389,40 €
18+815	Paso Inferior Camino	PI	506	547.389,40 €
19+395	Paso Inferior Camino	PI	420	566.247,26 €
19+935	Paso Superior Camino de Moncofa	PS	506	547.389,40 €
	TOTAL			

Tabla. Valoración estructuras Alternativa II.3

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL	
0+400	Paso Superior CV-230	PS	480	653.162,14 €	
2+640	Viaducto del río Caldeire	Vto	12.600	9.768.615,49 €	
3+700	Paso Inferior Camino local	PI	550	583.875,44 €	
4+020	Paso Inferior Camino local	PI	550	583.875,44 €	
4+320	Paso Inferior Camino local	PI	635	654.430,55 €	
4+750	Viaducto Barranco Randero	Vto	2.100	2.020.376,47 €	
5+180	Paso Inferior Camino local	PI	550	583.875,44 €	
5+450	Paso Inferior Camino local	PI	778	772.788,07 €	
5+940	Viaducto sobre Autovía A-7	Vto	5.040	4.202.038,65 €	
6+450	Paso Inferior Camino local	PI	635	654.430,55 €	
7+840	Paso Inferior Camino local	PI	585	613.145,34 €	
8+120	Paso Inferior Camino local	PI	550	583.875,44 €	
8+300	Paso Inferior Camino local	PI	550	583.875,44 €	
8+540	Paso Inferior CV-231	PI	850	896.577,73 €	
8+840	Paso Inferior Camino local	PI	635	654.430,55 €	
9+340	Viaducto sobre Autovía A-7	Vto	1.680	1.694.239,91 €	
9+780	Paso Inferior Camino local	PI	558	590.911,14€	
10+380	Viaducto Barranco Rodador	Vto	1.120	1.293.155,74 €	
10+650	Paso Inferior Camino local	PI	558	590.911,14€	
11+600	Paso Inferior Camino local	PI	550	583.875,44 €	
11+820	Viaducto Barranco Betxi	Vto	1.120	1.293.155,74 €	
13+050	Paso Inferior Camino local	PI	558	590.911,14€	
14+200	Paso Inferior Camino local	PI	550	583.875,44 €	
14+890	Viaducto sobre la Autopista AP-7	Vto	1.400	1.443.050,94 €	
15+120	Paso Inferior CV-222	PI	850	896.577,73€	
15+400	Viaducto del Río Sonella	Vto	11.200	8.715.258,20€	
16+580	Paso Inferior N-340	PI	1.202	1.186.683,69€	

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL
17+100	Paso Inferior Camino local	PI	550	583.875,44€
17+760	Viaducto sobre ff.cc Valencia - Castellón	Vto	700	967.019,18 €
17+960	Paso Inferior Camino local	PI	550	583.875,44€
18+390	Paso Inferior Camino local	PI	550	583.875,44€
18+940	Viaducto sobre carretera CV-185	Vto	1.120	1.293.155,74 €
19+280	Paso Inferior Camino local	PI	550	583.875,44€
19+800	Paso Inferior Camino local	PI	550	583.875,44€
20+300	Paso Inferior Camino local	PI	550	583.875,44€
20+700	Paso Inferior Camino local	PI	550	583.875,44€
	TOTAL			49.619.281,95 €

Tabla. Valoración estructuras Alternativa III.1

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL
0+540	Paso Superior Camino local	PS	966	927.149,26€
1+010	Paso Superior Camino local	PS	966	927.149,26 €
1+650	Viaducto Río Belcaire	Vto	2.170	2.057.850,27 €
2+500	Viaducto CV-2250	Vto	1.260	1.368.103,34 €
3+100	Paso Inferior Camino local	PI	550	583.875,44 €
3+950	Paso Superior Camino local	PS	1.302	1.159.450,29 €
4+820	Paso Inferior 4.8 Camino local	PI	550	583.875,44€
5+450	Viaducto Barranco de Torrent	Vto	938	1.094.430,10 €
6+020	Paso Superior CV-2220	PS	2.040	1.713.549,07 €
6+700	Viaducto Acequia El Bras	Vto	2.898	2.548.871,55 €
7+150	Paso Inferior Camino local	PI	635	654.430,55€
7+420	Viaducto	Vto	1.442	1.465.535,22€
8+240	Viaducto	Vto	1.260	1.368.103,34 €
8+880	Paso Inferior Camino local	PI	635	654.430,55€
9+500	Paso Inferior Camino local	PI	550	583.875,44 €
10+270	Paso Inferior Camino local	PI	718	723.164,20 €
10+890	Viaducto CV-18	Vto	3.948	3.414.859,84 €
11+520	Paso Inferior Camino local	PI	550	583.875,44 €
12+580	Paso Inferior Camino local	PI	585	613.145,34 €
12+960	Paso Inferior Camino local	PI	585	613.145,34 €
13+220	Viaducto CV-222	Vto	1.008	1.233.197,66 €
14+080	Viaducto Río Anna	Vto	1.778	1.746.703,23 €
14+500	Paso Inferior Camino local	PI	550	583.875,44 €
15+290	Paso Inferior Camino local	PI	550	583.875,44 €
15+450	Viaducto CV-185	Vto	1.400	1.443.050,94 €
16+590	Paso Inferior Camino local	PI	778	772.788,07 €
17+140	Paso Inferior Camino local	PI	550	583.875,44 €

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL	
17+580	Paso Inferior Camino local	PI	550	583.875,44€	
	TOTAL				

Tabla. Valoración estructuras Alternativa III.2

Alternativa IV. Única

P.K.	VÍA	TIPO	SUPERFICIE (m²)	COSTE TOTAL		
0+500	Paso Inferior Camino Local	PI	550	583.875,44 €		
1+510	Viaducto Río Mijares	Vto	2.520	2.346.513,03 €		
1+980	Paso Inferior Calle San Jaime ampliación	PI	340	476.351,09€		
2+870	Paso Superior Avda. Almanzora a mantener	PS	480	653.162,14 €		
3+060	Paso Inferior Camí de Ratlla D'Almassora	PI	340	476.351,09€		
4+950	Paso Inferior Camí Fadrell ampliación	PI	226	382.531,60€		
	TOTAL					

Tabla. Valoración estructuras Alternativa IV

2.5.5 Resumen Estructuras

UNIDAD	CONCEPTO	PRECIO UNITARIO (€)	MEDICIONES	COSTE TOTAL (€)
VIAD	истоѕ		9	10.997.256,21
m²	Viaductos. Tablero vía doble	535,34	9.450,00	5.058.963,00
ud	Estribo de viaducto ferroviario	245.493,71	18,00	4.418.886,77
ud	Pila de viaducto ferroviario	101.293,76	15,00	1.519.406,44
PASO	SUPERIOR		4	2.445.373,92
m²	Tablero de Paso Superior de camino	296,44	1.086,73	322.148,88
m²	Tablero de Paso Superior de carretera (dos carriles)	276,63	678,82	187.782,25
ud	Estribo de Paso Superior de carretera	215.272,51	2,00	430.545,03
ud	Estribo de Paso Superior de camino	154.522,65	6,00	927.135,89
ud	Pila de Paso Superior de carretera	89.835,01	2,00	179.670,02
ud	Pila de Paso Superior de camino	66.348,64	6,00	398.091,83
PASC	INFERIOR		26	19.093.818,22
m²	Cuerpo PI-Camino	829,23	13.835,66	11.472.921,66
ud	Emboquilles-Camino	63.900,00	42,00	2.683.800,00
m²	Cuerpo PI-Carretera	823,97	4.801,24	3.956.096,56
ud	Emboquilles-Carretera	98.100,00	10,00	981.000,00
	TOTAL			32.536.448,34

UNIDAD	CONCEPTO	PRECIO UNITARIO (€)	MEDICIONES	COSTE TOTAL (€)					
VIADI	UCTOS		4	8.520.063,84					
m²	Viaductos. Tablero vía doble	535,34	9.030,00	4.834.120,20					
ud	Estribo de viaducto ferroviario	245.493,71	8,00	1.963.949,67					
ud	Pila de viaducto ferroviario	101.293,76	17,00	1.721.993,97					
PASO	SUPERIOR		21	15.050.769,98					
m²	Tablero de Paso Superior de camino	296,44	4.043,76	1.198.731,84					
m²	Tablero de Paso Superior de carretera (dos carriles)	276,63	8.811,19	2.437.433,76					
ud	Estribo de Paso Superior de carretera	215.272,51	20,00	4.305.450,27					
ud	Estribo de Paso Superior de camino	154.522,65	22,00	3.399.498,28					
ud	Pila de Paso Superior de carretera	89.835,01	28,00	2.515.380,32					
ud	Pila de Paso Superior de camino	66.348,64	18,00	2.437.433,76 4.305.450,27 3.399.498,28					
PASC	INFERIOR		9	6.261.631,39					
m²	Cuerpo PI-Camino	829,23	4.166,19	3.454.722,66					
ud	Emboquilles-Camino	63.900,00	14,00	894.600,00					
m²	Cuerpo PI-Carretera	823,97	1.844,61	1.519.908,73					
ud	Emboquilles-Carretera	98.100,00	4,00	392.400,00					
	TOTAL								

UNIDAD	CONCEPTO	PRECIO UNITARIO (€)	MEDICIONES	COSTE TOTAL (€)
VIADU	JCTOS		7	11.233.752,39
m²	Viaductos. Tablero vía doble	535,34	10.780,00	5.770.965,20
ud	Estribo de viaducto ferroviario	245.493,71	14,00	3.436.911,93
ud	Pila de viaducto ferroviario	101.293,76	20,00	2.025.875,26
PASO	SUPERIOR		9	5.138.657,54
m²	Tablero de Paso Superior de camino	762.456,02	2.572,04	762.456,02
m²	Tablero de Paso Superior de carretera (dos carriles)	153.323,57	1.034,26	286.105,67
ud	Estribo de Paso Superior de carretera	430.545,03	4,00	861.090,05
ud	Estribo de Paso Superior de camino	2.163.317,09	14,00	2.163.317,09
ud	Pila de Paso Superior de carretera	179.670,02	3,00	269.505,03
ud	Pila de Paso Superior de camino	796.183,67	12,00	796.183,67
PASO	INFERIOR		20	14.033.504,90
m²	Cuerpo PI-Camino	829,23	8.994,76	7.458.709,84
ud	Emboquilles-Camino	63.900,00	30,00	1.917.000,00
m²	Cuerpo PI-Carretera	823,97	5.142,27	4.237.097,25
ud	Emboquilles-Carretera	98.100,00	10,00	981.000,00
	TOTAL			30.405.914,83

UNIDAD	CONCEPTO	PRECIO UNITARIO (€)	MEDICIONES	COSTE TOTAL (€)					
VIAD	истоѕ		13	18.123.752,70					
m²	Viaductos. Tablero vía doble	535,34	15.120,00	8.094.340,80					
ud	Estribo de viaducto ferroviario	245.493,71	26,00	6.382.836,44					
ud	Pila de viaducto ferroviario	101.293,76	36,00	3.646.575,46					
PASO	SUPERIOR		3	1.908.687,20					
m²	Tablero de Paso Superior de camino	296,44	840,00	249.009,36					
m²	Tablero de Paso Superior de carretera (dos carriles)	276,63	600,00	165.977,63					
ud	Estribo de Paso Superior de carretera	215.272,51	2,00	430.545,03					
ud	Estribo de Paso Superior de camino	154.522,65	4,00	618.090,60					
ud	Pila de Paso Superior de carretera	89.835,01	2,00	179.670,02					
ud	Pila de Paso Superior de camino	66.348,64	4,00	165.977,63 430.545,03 618.090,60 179.670,02 265.394,56 14.309.978,08 8.391.788,03					
PASC	INFERIOR		24	14.309.978,08					
m²	Cuerpo PI-Camino	829,23	10.120,00	8.391.788,03					
ud	Emboquilles-Camino	63.900,00	40,00	2.556.000,00					
m²	Cuerpo PI-Carretera	823,97	3.128,00	2.577.390,05					
ud	Emboquilles-Carretera	98.100,00	8,00	784.800,00					
	TOTAL								

UNIDAD	CONCEPTO	PRECIO UNITARIO (€)	MEDICIONES	COSTE TOTAL (€)		
VIAD	истоѕ		7	27.093.840,79		
m²	Viaductos. Tablero vía doble	535,34	32.270,00	17.275.421,80		
ud	Estribo de viaducto ferroviario	245.493,71	14,00	3.436.911,93		
ud	Pila de viaducto ferroviario	101.293,76	63,00	6.381.507,06		
PASO	SUPERIOR		6	3.287.013,53		
m²	Tablero de Paso Superior de camino	296,44	1.733,26	513.807,95		
m²	Tablero de Paso Superior de carretera (dos carriles)	276,63	554,26	153.323,57		
ud	Estribo de Paso Superior de carretera 215.272,51		2,00	430.545,03		
ud	Estribo de Paso Superior de camino	154.522,65	10,00	1.545.226,49		
ud	Pila de Paso Superior de carretera	89.835,01	2,00	179.670,02		
ud	Pila de Paso Superior de camino	66.348,64	7,00	464.440,47		
PASC	INFERIOR		16	1.545.226,49 179.670,02 464.440,47 9.825.385,42 7.817.071,46		
m²	Cuerpo PI-Camino	829,23	9.426,93	7.817.071,46		
ud	Emboquilles-Camino	63.900,00	32,00	2.044.800,00		
m²	Cuerpo PI-Carretera	823,97	0,00	0,00		
ud	Emboquilles-Carretera	98.100,00	0,00	0,00		
	TOTAL			40.206.239,75		

UNIDAD	CONCEPTO	PRECIO UNITARIO (€)	MEDICIONES	COSTE TOTAL (€)					
VIAD	истоѕ		8	13.692.686,82					
m²	Viaductos. Tablero vía doble	535,34	13.510,00	7.232.443,40					
ud	Estribo de viaducto ferroviario	245.493,71	16,00	3.927.899,35					
ud	Pila de viaducto ferroviario	101.293,76	25,00	2.532.344,07					
PASO	SUPERIOR		7	6.435.443,64					
m²	Tablero de Paso Superior de camino	296,44	5.208,00	1.543.858,05					
m²	Tablero de Paso Superior de carretera (dos carriles)	276,63	1.209,26	334.515,74					
ud	Estribo de Paso Superior de carretera	215.272,51	4,00	861.090,05					
ud	Estribo de Paso Superior de camino	154.522,65	10,00	1.545.226,49					
ud	Pila de Paso Superior de carretera	89.835,01	4,00	359.340,05					
ud	Pila de Paso Superior de camino	66.348,64	27,00	1.791.413,25					
PASC	INFERIOR		20	13.386.215,41					
m²	Cuerpo PI-Camino	829,23	11.206,40	9.292.659,95					
ud	Emboquilles-Camino	63.900,00	36,00	2.300.400,00					
m²	Cuerpo PI-Carretera	823,97	1.700,00	1.400.755,46					
ud	Emboquilles-Carretera	98.100,00	4,00	392.400,00					
	TOTAL								

UNIDAD	CONCEPTO	PRECIO UNITARIO (€)	MEDICIONES	COSTE TOTAL (€)
VIAD	JCTOS		8	25.272.580,25
m²	Viaductos. Tablero vía doble	535,34	28.140,00	15.064.467,60
ud	Estribo de viaducto ferroviario	245.493,71	16,00	3.927.899,35
ud	Pila de viaducto ferroviario	101.293,76	62,00	6.280.213,30
PASO	SUPERIOR		10	5.872.418,00
m²	Tablero de Paso Superior de camino	296,44	3.780,00	1.120.542,14
m²	Tablero de Paso Superior de carretera (dos carriles)	276,63	600,00	165.977,63
ud	Estribo de Paso Superior de carretera	215.272,51	2,00	430.545,03
ud	Estribo de Paso Superior de camino	154.522,65	18,00	2.781.407,68
ud	Pila de Paso Superior de carretera	89.835,01	2,00	179.670,02
ud	Pila de Paso Superior de camino	66.348,64	18,00	1.194.275,50
PASC	INFERIOR		21	11.788.335,54
m²	Cuerpo PI-Camino	829,23	10.120,00	8.391.788,03
ud	Emboquilles-Camino	63.900,00	40,00	2.556.000,00
m²	Cuerpo PI-Carretera	823,97	782,00	644.347,51
ud	Emboquilles-Carretera	98.100,00	2,00	196.200,00
	TOTAL			42.933.333,79

UNIDAD	CONCEPTO	PRECIO UNITARIO (€)	MEDICIONES	COSTE TOTAL (€)						
VIAD	истоѕ		10	32.690.066,07						
m²	Viaductos. Tablero vía doble	535,34	38.080,00	20.385.747,20						
ud	Estribo de viaducto ferroviario	245.493,71	20,00	4.909.874,18						
ud	Pila de viaducto ferroviario	101.293,76	73,00	7.394.444,69						
PASO	SUPERIOR		1	653.162,14						
m²	Tablero de Paso Superior de camino	296,44	0,00	0,00						
m²	Tablero de Paso Superior de carretera (dos carriles)	276,63	480,00	132.782,11						
ud	Estribo de Paso Superior de carretera	215.272,51	2,00	430.545,03						
ud	Estribo de Paso Superior de camino	154.522,65	0,00	0,00						
ud	Pila de Paso Superior de carretera	89.835,01	1,00	89.835,01						
ud	Pila de Paso Superior de camino	66.348,64	0,00	0,00						
PASC	INFERIOR		25	16.276.053,73						
m²	Cuerpo PI-Camino	829,23	12.643,83	10.484.614,58						
ud	Emboquilles-Camino	63.900,00	44,00	2.811.600,00						
m²	Cuerpo PI-Carretera	823,97	2.902,08	2.391.239,15						
ud	Emboquilles-Carretera	98.100,00	6,00	588.600,00						
	TOTAL									

UNIDAD	CONCEPTO	PRECIO UNITARIO (€)	MEDICIONES	COSTE TOTAL (€)
VIADU	JCTOS		10	17.740.705,51
m²	Viaductos. Tablero vía doble	535,34	18.102,00	9.690.724,68
ud	Estribo de viaducto ferroviario	245.493,71	20,00	4.909.874,18
ud	Pila de viaducto ferroviario	101.293,76	31,00	3.140.106,65
PASO	SUPERIOR		4	4.727.297,88
m²	Tablero de Paso Superior de camino	296,44	3.234,00	958.686,05
m²	Tablero de Paso Superior de carretera (dos carriles)	276,63	2.040,00	564.323,95
ud	Estribo de Paso Superior de carretera	215.272,51	2,00	430.545,03
ud	ud Estribo de Paso Superior de camino	154.522,65	6,00	927.135,89
ud	Pila de Paso Superior de carretera	89.835,01	8,00	718.680,09
ud	Pila de Paso Superior de camino	66.348,64	17,00	1.127.926,86
PASC	INFERIOR		14	8.702.474,39
m²	Cuerpo PI-Camino	829,23	8.336,56	6.912.907,55
ud	Emboquilles-Camino	63.900,00	28,00	1.789.200,00
m²	Cuerpo PI-Carretera	823,97	0,00	0,00
ud	Emboquilles-Carretera	98.100,00	0,00	0,00
	TOTAL			31.170.110,93

Alternativa IV. Única

UNIDAD	CONCEPTO	PRECIO UNITARIO (€)	MEDICIONES	COSTE TOTAL (€)						
VIAD	истоѕ		1	2.346.513,03						
m²	Viaductos. Tablero vía doble	535,34	2.520,00	1.349.056,80						
ud	Estribo de viaducto ferroviario	245.493,71	2,00	490.987,42						
ud	Pila de viaducto ferroviario	101.293,76	5,00	506.468,81						
PASO	SUPERIOR		1	653.162,14						
m²	Tablero de Paso Superior de camino	296,44	0,00	0,00						
m²	Tablero de Paso Superior de carretera (dos carriles)	276,63	480,00	132.782,11						
ud	Estribo de Paso Superior de carretera	215.272,51	2,00	430.545,03						
ud	Estribo de Paso Superior de camino	154.522,65	0,00	0,00						
ud	Pila de Paso Superior de carretera	89.835,01	1,00	89.835,01						
ud	Pila de Paso Superior de camino	66.348,64	0,00	0,00						
PASC	INFERIOR		4	1.919.109,22						
m²	Cuerpo PI-Camino	829,23	550,00	456.075,44						
ud	Emboquilles-Camino	63.900,00	2,00	127.800,00						
m²	Cuerpo PI-Carretera	823,97	906,14	746.633,79						
ud	Emboquilles-Carretera	98.100,00	6,00	588.600,00						
	TOTAL									

3. TÚNELES Y FALSOS TÚNELES

3.1 TÚNELES

El objeto del presente apartado es el análisis preliminar de los túneles diseñados en las diferentes alternativas del *Estudio Informativo de la Línea de Alta Velocidad Valencia-Castellón*.

Se han considerado túneles en mina para las alternativas II.1, II.3 y III.1, correspondientes a los tramos II y III.

En la siguiente tabla se recogen los túneles en mina proyectados junto a su localización y longitud:

Tramo	Alternativa	Túnel	P.K. inicio	P.K. final	Longitud (m)
	1	Serra Calderona I	0+220	0+550	330
	1	Serra Calderona II	1+150	1+575	425
III	1	Alt de la Punta	1+700	2+220	520

Tabla. Túneles proyectados

3.1.1 Bases de diseño

El diseño de los diferentes túneles que se contemplan en el Estudio Informativo se regirá por la normativa vigente de aplicación en esta materia, que actualmente es la NAP 2-3-1.0+M1 del Adif. Dicha normativa toma como referencia las siguientes normativas y recomendaciones:

- Reglamento (UE) Nº1299/2014 de 18 de noviembre de 2014 relativo a especificaciones técnicas de interoperabilidad del subsistema "infraestructura" en el sistema ferroviario de la Unión Europea.
- Ficha UIC 779-11, recomendaciones para dimensionar túneles ferroviarios por efectos aerodinámicos de presión sobre viajeros.
- Norma UNE-EN 15273-1:2013 "Aplicaciones ferroviarias. Gálibos.
 Generalidades. Reglas comunes para infraestructura y material rodante".
- Norma UNE-EN 15273-2:2013 "Aplicaciones ferroviarias. Gálibos material rodante".

- Norma UNE-EN 15273-3:2013 "Aplicaciones ferroviarias. Gálibo de implantación de obstáculos".
- Real Decreto 1434/2010, de 5 de noviembre, sobre interoperabilidad del sistema ferroviario de la Red Ferroviaria de interés general.

3.1.2 Sección tipo

En la definición de la sección tipo de un túnel ferroviario entran en juego diversos factores que condicionan su forma y sus dimensiones. Estos condicionantes pueden ser aerodinámicos, geotécnicos, constructivos, geométricos, etc. y se recogen en el *Anejo Nº4 Geología y Geotecnia*.

Los túneles que se definen dentro de las diferentes alternativas del Estudio Informativo tienen una longitud inferior a los 5.000 m, por lo que se toma la solución de túnel monotubo con doble vía. En dichos tuneles monotubo la plataforma ferroviaria deberá permitir albergar ambas vías con sus correspondientes andenes o pasos de vía. Las necesidades verticales ventran condicionadas por los siguientes elementos: altura y tipo de plataforma (vía en placa), altura de los trenes, catenaría, espacio para instalaciones de seguridad y explotación, etc.

Estas necesidades se traducen en:

- Dar cabida al gálibo cinemático de las circulaciones de mayor tamaño que discurrirán por la línea.
- Resguardos para la captación de corriente de forma segura y estable.
- Dar cabida a las instalaciones de seguridad y permitir la evacuación rápida de los viajeros en caso de accidente.

Para la sección libre además se debe tener en cuenta que en los túneles se establecerá un entreeje de 4,70 m.

Para la definición de la sección mínima de los túneles en esta fase del Estudio Informativo se ha utilizado la normativa NAP 2-3-1.0+M1 de Adif, en la que se recogen las secciones tipo más representativas que se han realizado en los últimos años para el tráfico de pasajeros.

De acuerdo con esta normativa, la sección libre se basa en considerar los siguientes criterios:

 Criterio de salud, consistente en limitar la máxima variación de presión durante el tiempo de transito del tren a lo largo del túnel. Criterio de confort, basado en la limitación de la variación máxima de presión en el interior del tren.

Desde el punto de vista geotécnico, se opta por una sección circular para conseguir un mejor reparto de las tensiones en la periferia del túnel, ya que la concentración de tensiones disminuye a medida que aumenta el radio de curvatura del contorno de la sección. Dada la longitud de los túneles que se recogen se opta por una ejecución por métodos convencionales, lo que resulta en que la solera de la sección es acabada en contrabóveda definiendo una sección circular truncada.

De este modo, de acuerdo con las condiciones de nuestra línea (exclusiva de viajeros) y los criterios marcados se toma la sección tipo con una sección libre de 85 m² con contrabóveda.

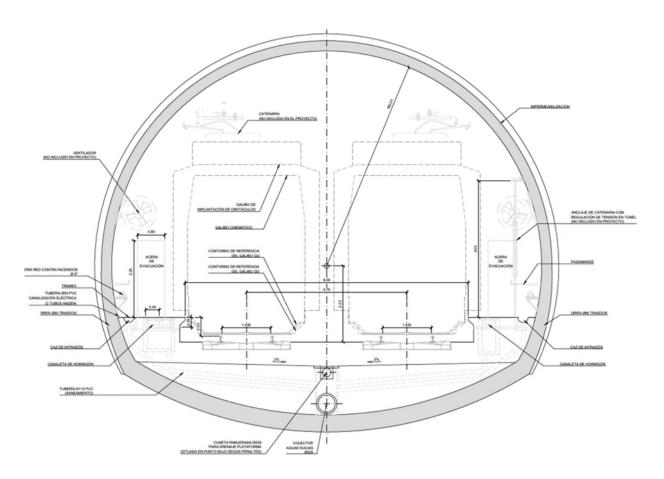


Figura 1. Sección tipo túnel de vía doble con contrabóveda

3.1.3 Geología y Geotecnia en túneles

Túnel Serra de la Calderona I – 0+220 al 0+550

Presenta una longitud de 330 m, con una altura máxima de tapada hasta la clave del túnel de 27 m.

Descripción geológico – geotécnica

El túnel se excava en sus 35 primeros metros en la unidad triásica Tr-3, formada fundamentalmente por argilitas rojizas con algunas intercalaciones de areniscas, que se hacen más frecuentes hacia el techo de la unidad. En la zona de contacto con las calizas y dolomías suprayacentes aparecen niveles calco-margosos de tonos claros en niveles decimétricos. El resto del túnel se excava en las calizas y dolomías de la unidad triásica Tr-4 (Muschelkalk), que presentan intercalaciones de margas y calizas margosas de potencia no superior a 0,5 m, que se repiten a intervalos de unos 2 m a la base, aumentando este hacia niveles superiores.

Estos materiales se presentan estratificados en bancos centimétricos a la base, que pasan a decimétricos y métricos a techo.

Así mismo hacia el techo de la serie se han reconocido niveles de calizas nodulosas en paquetes no mayores de 5 m.

En los últimos 50 m el túnel atraviesa suelos coluviales y de piedemonte (Qco y Qpied) que, con una potencia máxima de 5 m, se sitúan sobre el sustrato rocoso en clave del túnel, en especial en la zona de la boquilla del túnel.

El túnel atraviesa la estructura sur de un monoclinal que presenta las siguientes direcciones de buzamiento y buzamiento de la estratificación:

✓ Primera mitad: 345/35°

✓ Segunda mitad: 340/10°.

En las fichas correspondientes a las estaciones geomecánicas se detallan las familias de juntas medidas.

De los datos obtenidos de las estaciones geomecánicas y de los puntos de observación geotécnica se ha caracterizado el macizo rocoso, obteniéndose la calidad de la roca según las clasificaciones de Bieniawski y Barton. Los valores obtenidos son los siguientes:

- ✓ Argilitas (Tr-3): Calidad mala
- ✓ Calizas y dolomías (Tr-4):

0+300 al 0+420: RMR: 32, clase IV, mala, Q: 4.6 media

0+420 al 0+610: RMR: 49-51, clase III, media, Q: 9-12, media-buena

En el *Anejo nº 4 Geología y Geotecnia* se presenta la planta geológico-geotécnica y el perfil geotécnico de este túnel (Apéndices 4 y 3)

Consideraciones geotécnicas a tener en cuenta en el proceso constructivo

Los materiales calizos atravesados por el túnel deben ser excavados con explosivos, y pueden ser utilizados en pedraplenes y capa de forma. Para la argilitas y areniscas la rozabilidad es buena pudiendo ser excavados en su totalidad con rozadora. Pueden ser utilizados como rellenos todo-uno.

En especial en el tramo inicial, aunque también en la zona de calizas y dolomías debido a la karstificación, puede hacer necesario el uso localizado de cerchas y la realización de inyecciones para el relleno de huecos. En la boquilla de entrada se ha previsto necesario ejecutar paraguas de micropilotes.

Aunque no se han observado fenómenos kársticos muy desarrollados, es posible la aparición de zonas kársticas, en general con huecos de pequeño a moderado tamaño, así como fluencia de agua en grado bajo en zonas preferenciales, normalmente asociadas a tramos muy tectonizados. El nivel freático se sitúa por debajo de la rasante.

Túnel Serra de la Calderona II – 1+150 al 1+575

Presenta una longitud de 425 m, con una altura máxima de tapada hasta la clave del túnel de 41 m.

Descripción geológico – geotécnica

La totalidad del túnel se excava en las calizas y dolomías de la unidad triásica Tr-4 (Muschelkalk), que presentan intercalaciones de margas y calizas margosas de potencia no superior a 0,5 m. Estos materiales se presentan bien estratificados en bancos centimétricos a métricos. En el sondeo realizado se han reconocido calizas brechoides y calcarenitas en los primeros 8 m y calizas masivas, en general escasamente fracturadas, en el resto.

De las observaciones de campo se deduce la presencia de una suave estructura sinclinal cuyo eje sería prácticamente perpendicular a la dirección de la traza. Esto da como resultado los siguientes valores de dirección de buzamiento y buzamiento de la estratificación:

✓ Mitad sur del túnel: 235/25°

✓ Mitad norte del túnel: 150/10°

De los datos obtenidos de las estaciones geomecánicas y de los puntos de observación geotécnica se ha caracterizado el macizo rocoso, obteniéndose la calidad de la roca según las clasificaciones de Bieniawski y Barton. Los valores obtenidos son los siguientes:

✓ RMR: 51-60, clase III, media, Q: 6.2-9.3 media

En el Anejo 04 Geología y Geotecnia se presenta la planta geológico-geotécnica y el perfil geotécnico de este túnel (Apéndices 4 y 3).

• Consideraciones geotécnicas a tener en cuenta en el proceso constructivo

La totalidad de los materiales atravesados por el túnel deben ser excavados con explosivos, y pueden ser utilizados en pedraplenes y capa de forma.

Debido a la karstificación, puede ser necesario el uso localizado de cerchas y la realización de inyecciones para el relleno de huecos.

Es posible la aparición de zonas kársticas, en las que no se espera que presenten grandes huecos (de pequeño a moderado tamaño). Así mismo pueden aparecer goteos o fluencias de agua de bajo grado, preferentemente en zonas muy localizadas, asociadas a karst o a zonas de mayor fracturación. El nivel freático se sitúa por debajo de la rasante.

Túnel Alt de la Punta – 1+720 al 2+240

Presenta una longitud de 520 m, con una altura máxima de tapada hasta la clave del túnel de 43 m.

Descripción geológico – geotécnica

El túnel se excava en su totalidad en la unidad jurásica J3, formada por calizas bien estratificadas en bancos métricos a decimétricos, pudiendo aparecer intercalaciones de margas y calizas margosas.

Estas rocas se disponen siguiendo una estructura anticlinal suave, diferenciándose dos sectores dentro del túnel atendiendo a la disposición estructural presente y la dirección del trazado. En el sector sur la estratificación presenta un buzamiento hacia la boquilla sur mientras que en el norte es subhorizontal. Entre ambas zonas se produce una transición gradual en el buzamiento. Los datos estructurales de la estratificación son los siguientes (dirección de buzamiento/buzamiento):

- ✓ So=150/30°
- ✓ So=314/35°

De los datos obtenidos de los puntos de observación puede establecerse que las rocas presentan un grado de meteorización moderado (II-III), caracterizándose el macizo rocoso con calidad media (se le asigna un RMR entre 49 y 51 y Q entre 9 y 12.

En el *Anejo nº 4 Geología y Geotecnia* se presenta la planta geológico-geotécnica y el perfil geotécnico de este túnel (Apéndices 4 y 3)

Consideraciones geotécnicas a tener en cuenta en el proceso constructivo

Los materiales calizos atravesados por el túnel deben ser excavados con explosivos, y pueden ser utilizados en pedraplenes y capa de forma.

Aunque no se han observado procesos kársticos externos, no se descarta que puedan aparecer zonas de endokarst que afecten al túnel, si bien es de esperar que se trate en general de huecos de pequeño a moderado tamaño, así como fluencia de agua en grado bajo en zonas preferenciales, normalmente asociadas a tramos muy tectonizados. El nivel freático se estima que debe situarse por debajo de la rasante.

3.1.4 Sistemas constructivos

Para definir el método de constructivo para la excavación de los diferentes túneles se debe tener en cuenta los diferentes condicionantes de tipo geotécnico, la geometría y trazado del túnel, los niveles de seguridad durante la excavación, las afecciones a los edificios y otros elementos de la superficie, los aspectos ambientales y los condicionantes de plazo y económicos.

En esta etapa de estudio no se realiza un análisis riguroso y en profundidad de cada uno de los condicionantes que afectan a la ejecución de los diferentes túneles del trazado, pero si se realiza un primer análisis con la información disponible, de los factores más significativos que pueden determinar el método constructivo.

De este modo, se plantean dos metodologías para la ejecución de los túneles encima objeto de este apartado:

- Empleo de tuneladora (TBM-Tunnel Boring Machine).
- Métodos convencionales.

Se adopta como procedimiento constructivo el Método Convencional desechando la excavación mediante el uso de tuneladora debido a la escasa longitud de los túneles para plantear este método como rentable.

La normativa NAP 2-3-1.0+M1 a la que se ha hecho referencia anteriormente, recomienda el uso de la técnica del Nuevo Método Austríaco para la excavación de túneles, en el que se aplican sostenimientos basados en el empleo de hormigón proyectado, bulones, mallazo y cerchas.

En concordancia con el Nuevo Método Austriaco, también se ha seguido la clasificación de Romana 2000 (en Ingeotúneles, libro 6, capítulo 2) para la estimación inicial de la excavación como para los sostenimientos.

Las tablas propuestas en dicha clasificación son las siguientes:

	01.46=	LONGI	TUD DE PASE (m)	PA	PARTICIÓN DE LA					MÉTODO DE				
RMR	CLASE	MÁXIMA	RECOMENDADA		SI	ECCI	ÓN			EXCAVACIÓN				
100 —														┒
	∣a		≥5	K										
90 —	Ιb		≥5	MPLET					ERTO					
80 —	Па	— 16.0 —	≥5	SECCIÓN COMPLETA	ROZA				TBM ABIERTO	URAS	4			
70 — 60 —	Пb	- 9.5 - - 6.0 -	4/6	SE	CALOTA Y DESTROZA					VOLADURAS	ROZADORA			
50 —	III a	4.0 -	3/4		CALOT						ď		i	
40 —	III b	— 2.5 —	2/3				87					1		
30 —	IV a	— 1.75 —	1/2			ANCE							ı	
20 —	IV b	1.0	1			GALERÍA DE AVANCE	TIPLES	AC				0	N/PALA	
10 —	Va	1.0	0,5/0,75			GALERÍ	GALERÍAS MÚLTIPLES	CONTRABO VEDA	ESCUDO			FRESADO	ESCARIFICACIÓN/PALA	
0 —	Vb	12	0,5				GALERÍ	CONTR	ESC			ш	ESCAR	

Notas 1 La unidad para el pase es el metro (m)

- 2 El pase máximo es el límite teórico según BIENIAWSKI
- 3 El pase recomendado se refiere a la excavación en calota/avance y en caso de que exista galería de avance a la excavación de ensanche (y no a la propia galería)
- 4 Las líneas continuas indican que el método es apropiado para el intervalo y se usa frecuentemente
- 5 Las líneas de trazas indican que el método es posible para el intervalo y se usa a veces

Imagen. Recomendaciones para la excavación de túneles. Túnel de 10-14 m de ancho (Romana 2000)

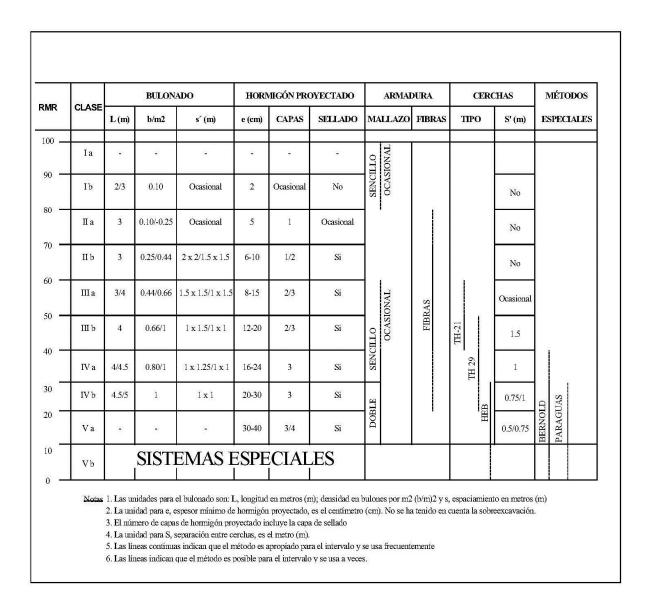


Imagen. Recomendaciones para el sostenimiento de túneles. Túnel de 10-14 m de ancho (Romana 2000)

Atendiendo a esta clasificación de Romana 2000, se establecen las recomendaciones de excavación y sostenimiento asignado a cada clase de roca, modificada de Bieniawski. Teniendo en cuenta la precisión de estudio y la clasificación realizada de la clase de roca de los diferentes túneles que se desarrollan en las alternativas II.1, II.3 y III.1 en el Anejo Nº4 Geología y Geotecnia, se establecen las recomendaciones de excavación y sostenimiento, utilizando una ejecución de avance y destroza por fases para aquellos tramos que presenten una calidad media, y en aquellos tramos en los nos encontramos una calidad inferior se recomienda la utilización del método Bernold para una mayor seguridad durante la excavación.

Finalmente, el método de excavación queda determinado de igual modo utilizando la clasificación de Romana 2000, por él que se establece que para aquellos terrenos de calidad media la excavación se realiza mediante el empleo de voladuras, mientas que para terrenos de calidad inferior se puede optar por el método de voladuras o mediante rozadora, qué es un método más frecuente en estos casos.

Fases de excavación

De acuerdo a las dimensiones que se han establecido para los diferentes túneles, se define un esquema de ejecución en dos fases: avance y destroza. Además de estas dos fases, se culmina con una tercera fase de contrabóveda, ya que es norma de buena práctica en estos casos.

- AVANCE: es la mitad superior de la sección del túnel (zona de bóveda). La sección de excavación de esta fase tiene una altura mínima de 6 m desde clave, suficiente para la correcta movilidad de la maquinaria necesaria. Se ejecuta en pases sucesivos, hasta calar todo el túnel.
- 2. DESTROZA: es la mitad inferior de la sección del túnel. En esta fase se comienza a excavar cuando se haya calado el túnel en la sección de avance. Si se apareciesen problemas geotécnicos, la excavación se puede subdividir por bataches. En caso de hacerse en dos fases, en primer lugar, se excava una mitad de la sección y se sostendrá el hastial, para a continuación, excavar la otra mitad y sostener el hastial restante. Otra posibilidad es excavar la zona central de la destroza, y posteriormente, excavar las zonas laterales sosteniendo sus respectivos hastiales. Las excavaciones en varias fases reducen al máximo la sección de excavación y, por tanto, aumentan la estabilidad.
- 3. En las zonas de mala calidad geotécnica, se ejecuta una tercera fase de Contrabóveda, excavada bajo la destroza. Esta operación es norma de buena práctica habitual en obras de este tipo. Al atravesar terrenos de mala calidad geotécnica, como las zonas de falla, tensiones horizontales mayores que las verticales, por lo que se requiere dar continuidad a dichas tensiones entre hastiales a través de la contrabóveda.

Ciclos de trabajo

La ejecución de la excavación, sostenimiento, impermeabilización y revestimiento de los túneles se realiza de acuerdo a procesos cíclicos. A continuación, se describen los ciclos de trabajo a seguir en cada etapa de ejecución:

- Excavación y sostenimiento: la primera etapa de la ejecución de los túneles consiste en la ejecución de los ciclos de excavación y sostenimientos. La excavación del terreno se realiza mediante voladuras según las características del mismo, definidas en el *Anejo nº 4 Geología y Geotecnia*. La longitud de los pases del terreno depende de la calidad del mismo, variando de 3 a 4 m metros para terrenos de mejor calidad y 1 a 2 metros en los que se den peores características geotécnicas. Una vez finalizado el pase de excavación, se coloca el sostenimiento previsto (hormigón proyectado, bulones, cerchas y mallazo) con ayuda de bulonadoras, jumbos y plataformas elevadoras. El ciclo finaliza con el replanteo del siguiente pase de excavación. Mediante este proceso cíclico, se excava tanto el avance como la destroza de los túneles.
- <u>Impermeabilización y revestimiento</u>: el proceso constructivo del revestimiento consta de las siguientes fases:
 - o En primer lugar, se comprueban escrupulosamente las secciones transversales del túnel, verificando que se dispone de espacio suficiente para obtener un canto mínimo de revestimiento de 30 cm. Para ello, se hace circular por el túnel un carro comprobador de gálibos, que marca todos los puntos de la periferia del sostenimiento que queden dentro de la sección de revestimiento.
 - o Posteriormente, se coloca la impermeabilización en todo el túnel.
 - o En tercer lugar, se hormigona un muro-zapata hasta la altura correspondiente al inicio de la bóveda. En la parte superior del muro se dejan embebidas unas roscas para el posterior atornillado de las sujeciones del carro de encofrado (conos de amarre). La misión de los muros zapata es múltiple: transmisión de los esfuerzos del revestimiento a la base (axiles y flectores), apoyo y sujeción del encofrado de la bóveda, e incluso son parte del propio revestimiento estructural del túnel.
 - Posteriormente, se posiciona el carro de encofrado y se hormigona el revestimiento.
 - Por último, se inyecta en el trasdós de clave una lechada de cemento para rellenar los huecos que hayan podido quedar en esta zona durante el hormigonado.

3.2 FALSO TÚNEL

En este apartado se analiza la propuesta de acceso de la nueva línea a la estación de Castellón, correspondiente a la Alternativa IV, en la que convergen las vías actuales con las futuras. Para ello, se propone la reposición de la línea actual mediante un nuevo falso túnel anexo al existente.

El estado actual del acceso sur a la estación de Castellón está formado por un falso túnel con plataforma de vía doble y ancho mixto, por él que circulan tráficos de cercanías, regionales, larga distancia y mercancías.

La nueva actuación consiste en la ejecución de un falso túnel que genere un nuevo acceso a la estación desde el sur. Este túnel contendrá la nueva plataforma de la línea convencional para dar servicio al tráfico de cercanías, regionales y mercancías. Mientras que el túnel actual pasa a albergar una nueva plataforma de ancho ESTÁNDAR con tráfico de alta velocidad, larga y media distancia.

El nuevo túnel se ubica al oeste del existente y tendrá una longitud de 1.334 metros, comenzando en el P.K. 4+950 hasta el final de su trazado en la estación de Castellón, en el P.K. 6+284.

3.2.1 Bases de diseño

El diseño de los diferentes túneles que se contemplan en el Estudio Informativo se regirá por la normativa vigente de aplicación en esta materia, que actualmente es la NAP 2-3-1.0+M1 del Adif. Dicha normativa toma como referencia las siguientes normativas y recomendaciones:

- Reglamento (UE) Nº1299/2014 de 18 de noviembre de 2014 relativo a especificaciones técnicas de interoperabilidad del subsistema "infraestructura" en el sistema ferroviario de la Unión Europea.
- Ficha UIC 779-11, recomendaciones para dimensionar túneles ferroviarios por efectos aerodinámicos de presión sobre viajeros.
- Norma UNE-EN 15273-1:2013 "Aplicaciones ferroviarias. Gálibos.
 Generalidades. Reglas comunes para infraestructura y material rodante".
- Norma UNE-EN 15273-2:2013 "Aplicaciones ferroviarias. Gálibos. Gálibos material rodante".
- Norma UNE-EN 15273-3:2013 "Aplicaciones ferroviarias. Gálibo de implantación de obstáculos".

- Real Decreto 1434/2010, de 5 de noviembre, sobre interoperabilidad del sistema ferroviario de la Red Ferroviaria de interés general.

3.2.2 Geología y geotecnia

Los materiales en los que se excava el falso túnel corresponden a depósitos pleistocenos de origen detrítico continental pertenecientes a las unidades Q_{CG} y Q_{MA} . En conjunto, ambas formaciones están constituidas por niveles fundamentalmente granulares con espesor métrico, continuidad lateral muy variable y frecuentes cambios laterales de facies.

La diferenciación entre ambas formaciones no es neta, ya que en este tramo las litologías son similares, con una alternancia de niveles de arcilla y limo marrón o marrón rojizo y grava y arena con contenido variable de finos, con predominio de los suelos granulares que en ambas formaciones pueden aparecer parcialmente cementados.

Cubriendo estos materiales existe un nivel general de rellenos de origen antrópico de espesor entre nulo y unos 3 m. El nivel freático queda siempre muy por debajo del fondo de la excavación.

Los materiales son excavables con ayuda de martillo picador en los niveles más cementados. El porcentaje de material donde se requería el empleo de martillo se estima en un 15-25% del total. En el caso de las pantallas de pilotes se deben usar útiles especiales de perforación para pasar los niveles más competentes.

3.2.3 Secciones tipo

Como se ha indicado en apartados anteriores, el nuevo túnel da servicio a la línea convencional. Ésta se utiliza fundamentalmente para los tráficos de cercanías. Es por ello, que para el dimensionamiento de las secciones tipo, con la velocidad de explotación inferior a los 140 km/h, no resulta un punto crítico el confort o la salud de los viajeros.

Las secciones tipo propuestas vienen condicionadas por las características de la ubicación (edificaciones, servicios, equipamientos, etc.), por lo que con ellas se busca la mínima superficie de afección.

Con el nivel de detalle al que se puede llegar en un estudio informativo, se recogen tres secciones tipo en función de la ubicación del nuevo túnel con respecto al existente.

Sección 1:

Esta sección se corresponde al comienzo del soterramiento de las vías en el punto en el que la nueva línea queda entre la línea existente actual y las vías de mantenimiento de Adif. La altura de lo muros es creciente en función del avance de la kilometración, hasta que se produce el cambio de sección.

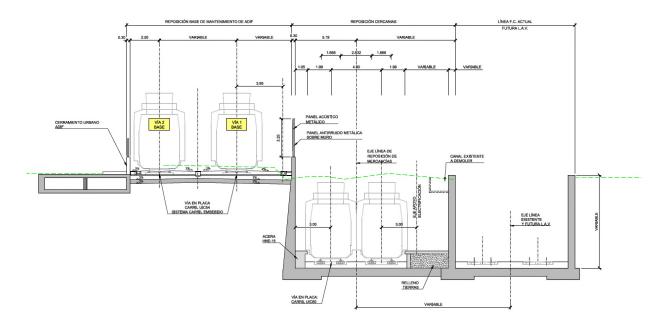


Imagen. Sección tipo falso túnel. Comienzo falso túnel

- Sección 2:

En esta segunda sección, se propone la ejecución de un falso túnel a través de un marco de hormigón armado ejecutado *in situ* a cielo abierto. La distancia entre los falsos túneles es variable hasta llegar a la confluencia de ambos en las proximidades de la estación de Castellón.

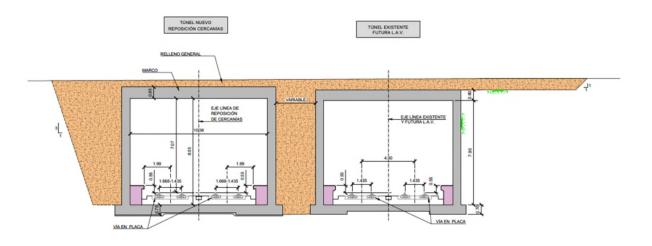


Imagen. Sección tipo falso túnel. Sección tipo marco

Sección 3:

En esta sección, referente a la confluencia de ambos túneles en un único túnel, la aproximación del Nuevo Túnel hace necesaria la demolición del hastial izquierdo del túnel existente. Ambas líneas quedan bajo una nueva cubierta que se resolverá con vigas prefabricadas con ancho variable a medida que se aproxime a la estación y una losa de compresión. Las pantallas están formadas por pilotes de 1,00 metros de diámetro, separados 1,15 m entre ejes.

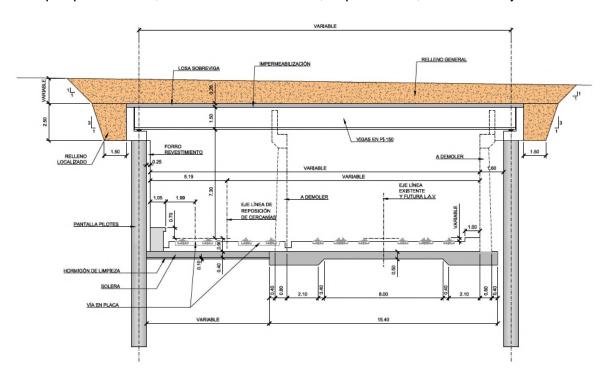


Imagen. Sección tipo falso túnel. Sección tipo de la confluencia de los túneles

3.2.4 Procedimiento constructivo

Al tratarse de un túnel muy somero, con cobertura de tierras de prácticamente nula, su construcción debe ser forzosamente en "túnel artificial". Los procedimientos, propios de túneles artificiales, que se han considerado son los siguientes:

- Excavación completa a cielo abierto: ejecución de un marco de hormigón armado y posterior cubrición.
- Ejecución de pantallas: cubrición con losa y posterior vaciado interior a cubierto.
- Procedimientos especiales de retranqueo de hastiales en la confluencia con el túnel existente.

Los dos primeros procedimientos se aplican en el tramo donde el nuevo túnel es independiente del túnel existente y presenta una anchura constante. Esta zona abarca la mayor parte del tramo, desde el origen hasta las proximidades de la estación de Castellón.

El tercer procedimiento se aplica en el resto de la longitud del túnel, donde el Existente y el Nuevo confluyen en un único túnel para entrar a la estación. Consiste, básicamente, en el retranqueo del hastial izquierdo del túnel existente para dotar al mismo de una anchura mayor que permita salvar el mayor número de vías de la plataforma ferroviaria.

La selección del procedimiento adoptado en cada caso viene fuertemente determinada por la necesidad de minimizar la afección en superficie (urbanización, servicios, tráfico, etc.), al igual que al tráfico ferroviario de la línea actual y el correcto funcionamiento de la estación de Castellón.

3.3 SOSTENIMIENTOS

En este apartado se define, de manera tentativa, el sostenimiento de los túneles previstos en el Estudio Informativo.

Para el diseño del sostenimiento de un túnel, generalmente se parte de las clasificaciones geométricas, en las que se basan distintos métodos empíricos apoyados en la experiencia en otros túneles, que aportan un prediseño ajustado del sostenimiento a instalar. En este estudio, se han utilizados criterios basados en las clasificaciones geomecánicas del terreno.

Los sostenimientos definidos en este estudio para túneles están basados en la experiencia en obras similares y en los sostenimientos propuestos por Romana (2000) en función del conocido índice de calidad geomecánica RMR de Bieniawski.

Las tablas que determinan dichas recomendaciones han sido introducidas en el apartado de sistemas constructivos y son las mismas que se utilicen para determinar los sostenimientos de dichos túneles:

			P.K.	P.K.	Longitud	Clasificación	Clasificación			SOSTENI	MIENTO	
Tramo	Alternativa	Túnel	inicio	final	(m)	RMR-Bieniawski original	modificada-Romana. Clase-Denominación	Excavación	Bulonado L(m)- s'(m)	Hormigón proyectado e(m)	Cerchas - s'(m)	Métodos especiales
	Serra 1 Calderor	Serra Calderona	0+190	0+310	120	IV - Mala	IV a - Mala a Media	Avance y destroza por fases	4/4,5 - 1x1,25/1x1	16-24	1 / TH-29	Bernorld
II		1	0+310	0+610	300	III - Media	III a - Media a Buena	Avance y destroza	3/4 - 1,5x1,5/1x1,5	8-15	Ocasional / TH-21	-
	1	Serra Calderona 2	1+150	1+590	440	III - Media	III a - Media a Buena	Avance y destroza	3/4 - 1,5x1,5/1x1,5	8-15	Ocasional / TH-21	-
III	1	Alt de la Punta	1+700	2+220	520	III - Media	III a - Media a Buena	Avance y destroza	3/4 - 1,5x1,5/1x1,6	8-15	Ocasional / TH-21	-

Tabla. Definición de sostenimientos

3.4 EMBOQUILLES

Para el comienzo de los trabajos de excavación de los diferentes túneles en mina mediante métodos tradicionales, se efectúa, en las diferentes bocas (entrada y salida), algunas labores previas encaminadas a proteger el progreso en los primeros metros de los túneles, los cuales siempre son especialmente problemáticos, ya que se excavan bajo un recubrimiento mínimo.

En estas condiciones, es recomendable incorporar en los primeros metros un revestimiento rígido que evite el riesgo de deformaciones excesivas e incluso posibles roturas.

La verticalización del talud, unida a la siguiente excavación del propio túnel, aconseja reforzar esta zona que, por su complejidad, es fuente de problemas habituales. Para el análisis del posible refuerzo se puede seguir el mismo criterio utilizado para los sostenimientos, es decir, el de Romana 2000, que se basan en el valor del RMR de Bieniawski.

En este estudio, se propone reforzar el talud con bulones de diámetro 25-32 mm, hormigón proyectado, con mallazo y/o fibras de acero, y redes/mallas metálicas de protección contra la caída de piedras, estas últimas no suponen mejora de la estabilidad del talud.

Los paraguas de protección vienen clasificados en tres tipos dependiendo del intervalo en el que se encuentren en cuanto al RMR del macizo rocoso:

- Paraguas ligero para RMR>60.

- Paraguas medio para RMR entre 30 y 70.
- Paraguas pesado para RMR<30.

Los paraguas utilizados en los túneles que se encuentran dentro del alcance de este documento son de tipo medio, de acuerdo con el RMR de los macizos rocosos.

El paraguas medio consiste en micropilotes de tubo metálico de diámetro exterior igual o inferior a 90 mm y espesor igual o inferior a 7 mm. Estos tubos se introducen en perforaciones de diámetro inferior a 6" (150 mm) y se rellenan interior y exteriormente con mortero, que puede aplicarse con la ligera presión. La distancia entre ejes de micropilotes oscila entre 40 y 70 cm. La longitud de estos paraguas varía entre 9 y 20 m. Para longitudes mayores de 9 m es preciso adicionar tubos por un sistema de rosca macho-hembra (la resistencia a flexión disminuye mucho en la sección roscada) o con manguitos exteriores. Generalmente los micropilotes asoman algo en cabeza y se arriostran con una viga de hormigón armado de directriz curva, paralela al límite teórico de la sección de emboquille.

4. VALORACIÓN TÚNELES

A continuación, se muestra la tabla de precios unitarios de las distintas tipologías de túneles de acuerdo a sus condicionantes geotécnicos.

Descripción	Importe (€/m)
Ejecución de túnel con sostenimiento para terreno con 40 <rmr<60, 85="" cm².<="" con="" contrabóveda.="" de="" excavación.="" geotextil.="" impermeabilización="" incluso="" libre="" lámina="" revestimiento.="" sección="" sin="" td="" y=""><td>12.000</td></rmr<60,>	12.000
Ejecución de túnel con sostenimiento para terreno con 40 <rmr<60, 85="" cm².<="" con="" contrabóveda.="" de="" excavación.="" geotextil.="" impermeabilización="" incluso="" libre="" lámina="" revestimiento.="" sección="" sin="" td="" y=""><td>14.500</td></rmr<60,>	14.500
Ejecución de contrabóveda. Espesor de revestimiento de 40 cm.	580
Ejecución de Falso túnel	9.500
Tratamiento del talud frontal de boquillas.	103.500

Tabla. Precios unitarios para los tramos en túnel y falso túnel

En los siguientes subapartados, se recoge la valoración de túneles y falso túnel de aquellas alternativas que cuenten con dicho elemento a lo largo de su trazado.

4.1.1 Alternativa II.1

TÚNELES Y FALSOS TÚNELES				
UNIDAD	CONCEPTO	PRECIO UNITARIO (€)	MEDICIONES	PRESUPUESTO (€)
m	Ejecución de túnel de calidad media- buena (incluyendo instalaciones no ferroviarias y parte proporcional de salidas de emergencia)	12.000,00	740,00	8.880.000,00
m	Ejecución de túnel de calidad mala- media (incluyendo instalaciones no ferroviarias y parte proporcional de salidas de emergencia)	14.500,00	120,00	1.740.000,00
m	Ejecución de contra bóveda. Espesor de 40 cm	580,00	860,00	498.800,00
ud	Tratamiento de talud de emboquilles	103.500,00	4,00	414.000,00
m	Falso túnel (incluyendo instalaciones no ferroviarias y parte proporcional de salidas de emergencia)	9.500,00	0,00	0,00
TOTAL			11.532.800,00	

Tabla. Valoración de túneles y falsos túneles Alternativa II.1

4.1.2 Alternativa II.3

TÚNELES Y FALSOS TÚNELES				
UNIDAD	CONCEPTO	PRECIO UNITARIO (€)	MEDICIONES	PRESUPUESTO (€)
m	Ejecución de túnel de calidad media- buena (incluyendo instalaciones no ferroviarias y parte proporcional de salidas de emergencia)	12.000,00	740,00	8.880.000,00
m	Ejecución de túnel de calidad mala- media (incluyendo instalaciones no ferroviarias y parte proporcional de salidas de emergencia)	14.500,00	120,00	1.740.000,00
m	Ejecución de contra bóveda. Espesor de 40 cm	580,00	860,00	498.800,00
ud	Tratamiento de talud de emboquilles	103.500,00	4,00	414.000,00
m	Falso túnel (incluyendo instalaciones no ferroviarias y parte proporcional de salidas de emergencia)	9.500,00	0,00	0,00
TOTAL			11.532.800,00	

Tabla. Valoración de túneles y falsos túneles Alternativa II.3

4.1.3 Alternativa III.1

TÚNELES Y FALSOS TÚNELES				
UNIDAD	CONCEPTO	PRECIO UNITARIO (€)	MEDICIONES	PRESUPUESTO (€)
m	Ejecución de túnel de calidad media- buena (incluyendo instalaciones no ferroviarias y parte proporcional de salidas de emergencia)	12.000,00	520,00	6.240.000,00
m	Ejecución de túnel de calidad mala- media (incluyendo instalaciones no ferroviarias y parte proporcional de salidas de emergencia)	14.500,00	0,00	0,00
m	Ejecución de contra bóveda. Espesor de 40 cm	580,00	520,00	301.600,00
ud	Tratamiento de talud de emboquilles	103.500,00	2,00	207.000,00
m	Falso túnel (incluyendo instalaciones no ferroviarias y parte proporcional de salidas de emergencia)	9.500,00	0,00	0,00
TOTAL			6.748.600,00	

Tabla. Valoración de túneles y falsos túneles Alternativa III.1

4.1.4 Alternativa IV

	TÚNELES Y FALSOS TÚNELES			
UNIDAD	CONCEPTO	PRECIO UNITARIO (€)	MEDICIONES	PRESUPUESTO (€)
m	Ejecución de túnel de calidad media- buena (incluyendo instalaciones no ferroviarias y parte proporcional de salidas de emergencia)	9.000,00	0,00	0,00
m	Ejecución de túnel de calidad mala- media (incluyendo instalaciones no ferroviarias y parte proporcional de salidas de emergencia)	11.500,00	0,00	0,00
m	Ejecución de contra bóveda. Espesor de 40 cm	580,00	0,00	0,00
ud	Tratamiento de talud de emboquilles	103.500,00	0,00	0,00
m	Falso túnel (incluyendo instalaciones no ferroviarias y parte proporcional de salidas de emergencia)	9.500,00	1.336,71	12.698.745,00
TOTAL			12.698.745,00	

Tabla. Valoración de túneles y falsos túneles Alternativa IV