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ANNEX 7 
Simplified calculation of sections in the 

Failure Limit State under normal stresses. 
1. Scope 

This Annex contains simplified formulae for calculating (dimensioning or checking) box 
or T-sections subject to simple or straight combined bending (see Figure A.7.1). It also 
contains a simplified method for reducing the simple or combinedd biaxial bending of 
sections to straight compound bending . The expressions in this Annex are valid solely for 
sections made of concrete with a strength of fck ≤ 50 N/mm2

 
. 

 

Figure A.7.1 

 2. Basic assumptions and limitations 

The formulas presented in the following paragraphs have been determined using the 
basic assumptions set out in Article 42.1.2 by adopting a bilinear diagram for passive 
reinforcement steel and a parabolic-rectangular diagram for compressed concrete 
(approximated, for the calculation of stress and moment resultants, to a rectangular 
diagram, as set out in Article 39.5). 

The failure strain domains, which identify the Failure Ultimate Limit State under normal 
stresses, in accordance with the criteria set out in Article 42.1.3, have also been taken into 
account. 

The formulas indicated are valid for the various types of steel permitted in this Code for 
passive reinforcements, provided that these comply with: 

 
 
 
 
 

 

 
 
The meaning of certain variables used in the formulas in the following paragraphs is 

defined as follows. 
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The equilibrium equations constitute a non-linear system due to the non-linear behaviour 
of materials and the existence of three pivots for defining the failure domains. 

Figure A.7.2 shows, according to the position of the neutral fibre x, the evolution of 
stress in the reinforcement layers As1 and As2 and the evolution of the axial force and 
moment of the resultant of the compressed concrete about the fibres in which As1 and As2

The figure and the formulas in this Annex have been determined by considering that the 
deformation of the yield strength of steel is ε

 
are located. The definition of the moment of the resultant of the compressed block uses a 
reference fibre at depth y. 

y

In addition, and in order to simplify the expressions obtained, the figure of 0,0033 
instead of 0,0035 has been taken as the deformation of pivot 2, i.e. the maximum 
deformation of compressed concrete. This assumption does not significantly affect the 
results obtained. 

 = 0,002. This constitutes a reasonable 
simplification and an intermediate value between those corresponding to the available 
steels and the reduction factor of steel defined in Article 15.3. 

The analytical expression of the stress in the steel in layer As2, in its evolution between -
fyd and fyd

Given these simplifications, the expressions of the various variables in Figure A.7.2 are: 

, has been linearised. This simplification leads to the definition of -0,5 d' and 2,5 d' 
delimiters which are approximate and which also produce sufficiently accurate results. 

- For s1(x) = σs1 (x)/fyd
 

  this gives:     

 
 
 
 
 
 
 
 
 

- For s2(x) = σs2 (x)/fyd

 
 this gives: 
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For a rectangular section, where Nc

 

(x) is the resultant of the compressed block, this 
gives: 

Nc (x) = Ua

and, where M

 λ(x)η(x) 

c

 

(x,y) is the benting moment of the compressed concrete block about a 
generic fibre situated at depth y, this gives: 

 
where:  

 

 

 

 

 

The force and moment equilibrium equations, according to the above expressions, 
may be written as follows (see Figure A.7.3): 

 
 
 
 
 
 
 
 
 
 
In these expressions, the values of e1 and e2

e

 are obtained as follows: 

1 = e0 - 0,5 h + d 
e2 = e0

For dimensioning, N = N

 - 0,5 h + d' 

d and x, Us1 and Us2 are unknown. For checking, N = Nu, 
Us1 and Us2 are data, and x and Nu are unknown. 
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Figure A.7.2 
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Figure A.7.3 

3. Simple bending in rectangular section 

3.1. Dimensioning 

3.1.1. Neutral fibre confined to a prefixed depth, xf, less than or equal to the limit depth, 
x

For concretes where f

l 

ck ≤ 50 N/mm2, the limit depth is xl
 

 = 0,625 d. The frontal moment is:  

 
 
 
 
1° Md ≤ M
 

f  

 
 
 
 
 
 
2° Md > Mf 

 
  

 
 
 
 
 
 
 
 
 
 
 
 

The above formulas assume that the section will only have reinforcement in the compressed 
face if the design bending force Md is greater than the frontal moment, i.e. the bending of the 
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compressed concrete block about the fibre where the tensioned reinforcement is located, for x = 
xf

Case 1° corresponds to dimensioning situations where 0 < x ≤ x
. 

f. In case 2°, the position of 
the neutral fibre, x = xf

The possibility of dimensioning by fixing the depth of the neutral fibre below the limit depth is 
useful in cases where sections must have greater ductility. 

, remains constant. 

3.1.2. The prefixed fibre is located at the limit depth, x

1° M

l 

d ≤ 0,375 U0

 

d  

 

 

 

 

2° Md > 0,375 U0

 

d  

 

 

The above formulas assume that the section will only have reinforcement in the compressed 
face if the design bending force Md is greater than the limit moment 0,375 U0d, i.e. the bending 
of the compressed concrete block about the fibre where the tensioned reinforcement is located, 
for x = 0,625 d, which assumes a deformation in the steel fibre of εy

Case 1° corresponds to dimensioning situations where 0 < x ≤ 0,625 d. In case 2°, the 
position of the neutral fibre, x = 0,625 d, remains constant. 

=0,002. 

3.2. Checking 
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In case 1°, the neutral fibre is positioned between 0 < x < 2,5d'. In case 2°, the neutral 
fibre is positioned between 2,5 d' ≤ x ≤ 0,625 d. In case 3°, the neutral fibre is positioned 
between 0,625 d < x < d. 

4. Simple bending in T-section 

For a T-section, the following definitions are used: 

    U Tc = f cd b h

  U 

0 

Ta = f cd (b-b0) h

When h

0 

0 > 0,8 d, the depth of the neutral fibre in the rectangular block is less than h0 and the 
section can be calculated as if it were a box section, b x h. As a result, it is only necessary to 
analyse in this section the problem which arises when h0

4.1. Dimensioning 

 < 0,8 d. This limitation must be 
deemed to be met in order to use the following expressions. 

4.1.1. Neutral fibre confined to a prefixed depth, xf, less than or equal to the limit depth, 
x

 
l 

1° ho ≥ 0,8 x
 

f 

The dimensioning will be carried out according to section 3.1, taking the width of  the 
compression flange as the section width. 

 
2°  ho < 0,8 x
 

f 

2°A Md ≤ UTc (d – 0,5h0
 

) 

As in case 1°, the dimensioning is carried out according to section 3.1, taking the  width 
of the compression flange as the section width. 

 
2°B Md ≥ UTc (d - 0,5h0

In this case, the dimensioning will be carried out according to section 3.1 but using  an 
equivalent design moment, as defined below: 

) 
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) 

and taking the web width as the section width and defining the mechanical  capacity of 
the resulting reinforcement as: 
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 where Us1 and Us2 are the mechanical capacities resulting from the dimensioning  and 
Us

e
1 and Us

e
2 are the values obtained according to section 3.1 for Md

e

 
. 

In case 1°, the depth of the compressed block will always be within the flange of the section, 
without involving the web. 

In case 2°, dimensioning situations may be given in which the compressed block also 
involves the web. In case 2A, the compressed block will only be located within the flange of the 
section and the same expressions as for case 1° may therefore be used. In case 2B, the 
compressed block involves part of the web of the section but the contribution of the flanges 
does not vary with the position of the neutral fibre. As a result, the section can be dimensioned 
as if this were a box section with a width equal to that of the web, using different moment and 
mechanical capacity values to take account of the effect of the compression flanges. 

 

4.1.2. The prefixed fibre is located at the limit depth, x

This case will be analysed according to section 4.1.1 with x

l 

f = xl

4.2. Checking 

. 

The following non-dimensional variables are defined:  
 

 
 
 
 
 
 
 
 
 
 
 

where: 

σS1 (1,25 h0) Stress in reinforcement As1 for x = 1,25 h

σ

0 

S2 (1,25 h0) Stress in reinforcement As2 for x = 1,25 h

1° U

0 

Tc + Us1 s1 +Us2 s2 ≥ 

The section will be checked according to section 3.2, taking the width of the compression 
flange as the section width. 

0 

2° UTc + Us1s1 + Us2s2 

 2 A. U

< 0 

s1 - Us2 ≤ 0,5 fcd b0d + ß U

The section will be checked according to action 3.2, taking into account the  equivalent 
mechanical capacities of the reinforcements which are defined below: 
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The ultimate moment resisted by the section will be: 
 

Mu = Mu
e  + UTa ( d – 0,5 h0 

 
) 

where Mu
e  is the moment obtained according to section 3.2, taking the web width as the 

section width and taking into account the equivalent mechanical capacities Us
e
1 and Us

e
2

 
. 

 2 B. Us1 - Us2 > 0,5 fcd b0 d + ß U
 

Ta 

The section will be checked according to section 3.2, taking the web width as the section 
width and taking into account the equivalent mechanical capacities of the reinforcements which 
are defined below: 
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e
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s
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The ultimate moment resisted by the section will be: 

   Mu = Mu
e  - UTa ( 0,5 h0

where M

 - d' ) 

u
e  is the moment obtained according to section 3.2, taking the web width as the 

section width and taking into account the equivalent mechanical capacities Us
e
1 and Us

e
2

 
. 

In case 1°, the depth of the compressed block is always contained within the flange of the 
section, without involving the web. 

 
In case 2°, the web is always involved in the compressed block. 

 

5. Dimensioning and checking of box sections subject to straight combined 
bending. Symmetrical reinforcement arranged in two layers with equal covers. 

A simplified calculation method for box sections with two symmetrical reinforcement layers is 
developed below. 

5.1 Dimensioning 
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CASE 3° Nd > 0,5 U
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5.2. Checking 
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6. Simple or combined biaxial bending in box section 

The method proposed allows the calculation of box sections, with reinforcement at all four 
corners and equal reinforcements in all four faces, by reducing the problem to one of straight 
compound bending with a hypothetical eccentricity, as defined below (Figure A.7.4). 

b
h e  + e = e xyy β′  

where: 

b
h  

e
e

x

y ≥  

and ß is defined in Table A.7.6. 
TABLE A.7.6 

 

v = Nd / (bhfcd) 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 >0,8 

ß 0,5 0,6 0,7 0,8 0,9 0,8 0,7 0,6 0,5 

For high quantities (ω > 0,6), the values indicated for ß will be increased by 0,1 
and, for small quantities (ω < 0,2), the values of ß will be reduced by 0,1. 

 
 

 
Figure A.7.6 
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